
Basic Seismic Utilities User's Guide

Dr. P. Michaels, PE March 22, 2022
<pmsolidx@gmail.com> Version 3.0.3
<paulmichaels@boisestate.edu>

Software for Engineering Geophysics

B

ic
e is ic Ut i l i

e
s

a

S
t is

m

45

90

135

180

270

315

225

0

Michaels Engineering Geophysics
Boise, Idaho

Boise State Geosciences, Engineering Geophysics
Boise State University
Boise, Idaho 83725

2

Acknowledgements
This software is an updated version of the original release that was done during a sabbatical leave 7 years ago.

On this sabbatical, the goal has been portability. That is, while some new programs have been added, much of
the software has been carried forward, and thus is now available for use on a variety of operating systems. Thus,
I remain indebted to the work of many others in the development of this package. I would like to thank Enders
A. Robinson and the Holden-Day Inc., Liquidation Trust (1259 S.W. 14th Street, Boca Raton, FL 33486, Phone:
561.750-9229 Fax: 561.394.6809) for license to include and distribute under the GNU license subroutines found
in Dr. Robinson’s 1967 book [20] , Multichannel time series analysis with digital computer programs. This book
is currently out of print, but contains a wealth of algorithms, several of which I have found useful and included in
the BSU Fortran77/gfortran subroutine library (sublib4.a). This has saved me considerable time.

In other cases, subroutines taken from the book Numerical Recipes [18] had to be replaced (the publisher did
not give permission to distribute). While this is an excellent book, and very instructional for those interested in the
theory of the algorithms, future authors of software should know that the algorithms given in that book are NOT
GNU. Replacement software was found in the GNU Scientific Library (GSL), and in the CMLIB.

For plotting, I remain indebted to the developers of PLPLOT. PLPLOT credits have grown to be too many to
list. However, there are a number of instances where I ran into dependency problems with some operating systems,
particularly the Microsoft family. So I have added GNUPLOT alternatives.

Where there was a need to solve for eigenvalues, or invert a matrix, I have relied on LAPACK. This excellent
package is well worth installing, and I acknowledge the contributions of the many authors of LAPACK and BLAS.

Lastly, the author acknowledges financial support over the years from various clients. Financial support in-
cluded that provided by grant DAAH04-96-1-0318 from the U.S. Army Research Office. Views and conclusions
contained herein are those of the author and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Army Research Office or the U.S. Government. This
material is also based upon work supported by the National Science Foundation under Grant No. 0321233. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do
not necessarily reflect the views of the National Science Foundation. Other support has been provided by the Idaho
State Board of Education, Boise State University Sabbatical Committee, Idaho Transportation Department, and
Idaho Power. Again, views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the views of those who have provided the author support.

Copyright
BSU-3.0.3 is Copyright © 2021 Paul Michaels <paulmichaels@boisestate.edu> . These programs are free

software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL as
published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU General Public
License along with these programs; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

A copy of the GNU license also appears in Appendix D of this guide.
Codes licensed to the public domain included in BSU are xdrfloa.c (IBM License, E) and Fortran functions

rand.f and runif.f from CMLIB, provided to the public from NIST. http://gams.nist.gov/serve.cgi/Packages

http://gams.nist.gov/serve.cgi/Packages

CONTENTS 3

Contents
1 Description of BSU 10

1.1 What’s New in BSU-3.0.3 . 10
1.2 What Changed BSU-3.0.1→ BSU-3.0.2 . 12

2 Obtaining and Installing BSU 14
2.1 Package Managers . 14
2.2 Compile Tips . 14

2.2.1 Most Common Problem . 14
2.3 Building From Source . 15

2.3.1 Dependencies . 15
2.3.2 General Directions . 15
2.3.3 Debian 10 Buster . 16

2.3.3.1 Debian 10 Dependencies (at time of this writing) 16
2.3.3.2 Directories to Create . 16

2.3.4 Slackware . 17
2.3.5 Arch Linux . 18
2.3.6 CentOS 7 . 19

2.3.6.1 Dependencies (at time of this writing) . 19
2.3.6.2 Directories to Create . 19
2.3.6.3 Alternative Approach . 20

2.3.7 Chrome Book . 20
2.3.7.1 Dependencies . 21
2.3.7.2 Libmseed dependency . 21
2.3.7.3 Build BSU-3.0.3 . 21

2.3.8 MacBook Pro . 22
2.3.9 Redhat Enterprise . 23
2.3.10 Microsoft Windows . 24

2.4 Octave . 24
2.5 What to download . 25
2.6 Installing Binary Packages . 25

2.6.1 Debian, Mint, Ubuntu, or Chrome Book Install (APT) 26
2.6.2 RedHat Package Install (RPM) . 26
2.6.3 Slackware or Arch Linux Package Install . 26
2.6.4 MacBook Pro Darwin Package Install . 26
2.6.5 Microsoft Package Install . 26

2.7 Installing Source Code . 27
2.7.1 TAR Source: Linux or Darwin . 27

2.7.1.1 Additional Hints on Configure Options . 27
2.7.2 Install Source: Linux Packages . 28

2.7.2.1 Debian Source Package Build . 28
2.7.2.2 Redhat Source Package Build . 29

2.8 Security . 30
2.8.1 GPG Signature, RPM Packages . 30

2.8.1.1 GPG Signature, DEB Packages . 30
2.8.1.2 Detatched GPG Signatures . 31

3 Other Software 32
3.1 PLPLOT . 32
3.2 BLAS and LAPACK . 32
3.3 GSL and CBLAS . 32
3.4 CMLIB . 32
3.5 LIBMSEED . 33

CONTENTS 4

3.6 Octave . 33
3.7 Seismic Unix . 33
3.8 Xfig . 33
3.9 Trouble Shooting . 33

3.9.1 Example: PLPLOT tar, BSU rpm . 33

4 Programming in BSU 35
4.1 Programming Guidelines . 35
4.2 Conventions and Process Flow Description . 36

4.2.1 File Naming Conventions . 36
4.2.2 Input Parameter Conventions . 36
4.2.3 Process Flow, Fortran Codes . 37
4.2.4 Process Flow, C-Language Codes . 38
4.2.5 Locations of Functions and Subroutines . 39

5 BSU Documentation 39
5.1 Command Line Help . 39
5.2 The bhelp Program . 39
5.3 BSU Man Pages . 40
5.4 BSU User’s Guide and Running BSU . 40

6 Using BSU 41
6.1 BSU Data Format, BSEGY . 41

6.1.1 Data Format Conversion . 41
6.1.2 SEGY Exchange Format . 42
6.1.3 IBM and IEEE Floats . 43

6.1.3.1 IBM FLOAT . 43
6.1.3.2 IEEE FLOAT . 44

6.2 Checking Binary Files with hexdump . 44
6.3 Preparing data for BSU processing . 44
6.4 Conversion Programs: BSEGY <–> [SEGY | ASCII | CVS | Bison | SEG2] 45

6.4.1 seg2txt . 45
6.4.2 seg2csv . 45
6.4.3 ba2s . 46

6.5 Setting Geometry . 46
6.5.1 Setting Geometry SEG-2 Data: Example 1 [bnez-> gensetg-> egg2seg-> setgeom] 47
6.5.2 Setting Geometry SEG-2 Data: Example 2 [bnez-> topcon2] 51

6.5.2.1 NEZ Format . 52
6.5.3 Setting Geometry Bison Data: [genref-> geom->geom2(go1)] 53

6.6 Plotting Seismic Data . 55
6.6.1 Using bplt . 55

6.6.1.1 Example bplt . 56
6.6.2 Using bplt in a bash script . 57
6.6.3 Plotting with traplt . 58
6.6.4 Plotting with SU . 60
6.6.5 Plotting with Gnuplot . 61
6.6.6 Plotting with Octave . 63

6.6.6.1 Running traplt.m . 63
6.6.6.2 Running profplot.m . 64

6.7 Down-hole Seismic Processing . 64
6.7.1 Seismic Source (SH- and P-wave) . 64
6.7.2 Down-hole and Reference Geophones . 65
6.7.3 Sample Data Set from GeoLogan97 . 67
6.7.4 Where to Find Scripts and Octave Codes . 68

CONTENTS 5

6.7.5 Converting Bison Files to BSEGY Format and Setting Geometry 69
6.7.5.1 Post genvsp processing steps . 71

6.7.6 Determining Down-hole Tool Orientation by PCA . 71
6.7.7 Inserting the PCA Results to the Trace Headers (btor) 74
6.7.8 Checking the Headers for Source and Geophone Polarizations(bdump) 76
6.7.9 Using seisazi.m to display azimuth headers . 77
6.7.10 Rotating the Horizontal Data into Alignment with Source (genbrot and brot) 77

6.7.10.1 Post brot processing steps . 79
6.7.10.2 Verify Rotation with hodoplot.m . 79
6.7.10.3 Using hodo2plot.m to plot hodograms . 80

6.7.11 Sorting and Merging to Common Receiver Component Gathers 80
6.7.12 Edit Merge Script for the Specific Down-hole Survey . 81
6.7.13 Description of the Merge Procedure. 81
6.7.14 Plotting the Results from Merge . 82

6.8 Down-hole Seismic Analysis . 83
6.8.1 Picking First Arrivals . 83

6.8.1.1 Quality control of picks . 84
6.8.2 Vertical Time and Observed Travel Time Inversion (vfitw.m, vplot.m, bvsp) 85
6.8.3 Determination of Stiffness and Damping . 86

6.8.3.1 Governing Differential Equation . 86
6.8.3.2 Measurement of Velocity Dispersion (bvas) 87
6.8.3.3 Measurement of Inelastic Amplitude Decay (bamp) 89
6.8.3.4 Recording Aperture and the Selection of Filter Bandwidth for bvas and bamp . 90
6.8.3.5 Inversion for Stiffness and Damping (cainv3.m) 91

6.8.4 Plotting Inversion Results (caplot3.m) . 92
6.8.4.1 Post caplot3.m processing. 92
6.8.4.2 Kelvin-Voigt Modeling with cafwd3.m . 93

6.9 Seismic Refraction Processing . 95
6.9.1 Converting from SEGY to BSEGY Format . 95

6.9.1.1 Creating a Base Map from BSEGY Headers 95
6.9.2 Using refplot.m for first look . 96
6.9.3 Direct Wave Method . 97
6.9.4 Determination of Overburden Velocity . 98
6.9.5 Delay Time Method . 99

6.9.5.1 Adding Constraint Equations . 100
6.9.6 Delaytime Solution for Shoulder Line . 101
6.9.7 Broadside Shooting: Slope Line . 101

6.9.7.1 Delay time Constraints . 102
6.9.7.2 Refractor Velocity Constraint . 102

6.9.8 Converting the Bison File to BSEGY, Setting Geometry (topcon, bis2seg, bhed) 102
6.9.8.1 Contents of the gogeom script. 103

6.9.9 Picking First Breaks . 104
6.9.10 Building the System of Delay Time Equations (bref) 104

6.9.10.1 Running bref . 105
6.9.10.2 Conventions: Structure of Gxxxx matrix . 106
6.9.10.3 Conventions: Structure of Dxxxx vector . 106
6.9.10.4 Editing the Gxxxx and Dxxxx files . 106

6.9.11 Running the Delay Time Inversion (delaytm.m) . 107
6.10 Reciprocal Refraction . 110

6.10.1 Sorting to Common Receiver Gathers . 110
6.10.2 Running delaytmR.m . 113

6.11 Surface Wave Processing . 115
6.11.1 Example Rayleigh Wave Processing: Measuring Dispersion 116
6.11.2 Running BVAX . 116

CONTENTS 6

6.11.3 Example Rayleigh Wave Processing: Synthetic Seismogram 117
6.11.4 Example Rayleigh Wave Processing: Manual Interpretation (FwdR1.m) 119
6.11.5 Example Rayleigh Wave Processing: Automated Inversion (invR1.m) 120
6.11.6 Spectral Analysis of Surface Waves SASW (SASW.m, saswv.m) 121

6.12 Spectral Analysis . 123
6.12.1 Yule-Walker All Pole Spectra . 123

6.12.1.1 Using yulewalker.m . 123
6.12.1.2 Using yulewalker.m with Autocorrelation Input 124

7 Seismic Modeling with BSU 124
7.1 Solution to Lamb’s Problem (lamb) . 124

7.1.1 Running Program lamb . 125
7.1.1.1 The itype argument in lamb. 126
7.1.1.2 The pol argument in lamb. 126
7.1.1.3 The stab argument in lamb. 126
7.1.1.4 Examples of lamb . 127

7.2 Elastodynamic Solution Near and Far Field (bnfd) . 129
7.2.0.1 Example of bnfd . 129

7.3 Elastic Rayleigh Wave Modeling . 130
7.3.1 Program halfsp . 130
7.3.2 Rayleigh Wave Dispersion (programs gendis and disper) 131

7.3.2.1 Two ways to run disper . 131
7.3.3 gendis . 132

7.3.3.1 gendis . 133
7.3.4 showmdl . 133
7.3.5 disper . 134

7.3.5.1 Editing the namelist file, disper.d . 134
7.3.6 Synthetic Rayleigh Wave Seismograms (waves) . 137

7.3.6.1 genwav . 137
7.3.6.2 Editing the waves.d file . 139
7.3.6.3 Signal Amplitudes . 141
7.3.6.4 From Displacement to Velocity . 143
7.3.6.5 Pitfalls in setting parameters . 144

8 Hydraulic Conductivity from Seismic Damping 146
8.1 Mapping KVMB to KV . 147
8.2 KV Damping Ratio vs Hydraulic Conductivity . 147
8.3 Frequency and Hydraulic Conductivity . 148
8.4 Inverting Stiffness and Damping for Hydraulic Conductivity . 149

9 Seismic Interferometry 150
9.0.1 BCOR . 150
9.0.2 BIMG . 152
9.0.3 GENBIMG . 153

A Appendix (bhelp listing) 160

B Appendix (Merge-all) 165

C Appendix (Merge2) 169

D GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 171

E IBM LICENSE 177

LIST OF FIGURES 7

Index 177

List of Figures
1 Example use of bplt to generate Post Script plot of down-hole data. Traces are plotted by geophone

elevation. Data from a Boise River gravel borehole, B5. 56
2 Example use of bplt to focus in on a single signal, trace 41. 56
3 Example use of the psplot script. Data are rescaled by the L2 norm (option 3) of each trace before

plotting by bplt . 58
4 Using bplt to focus on trace 41 from 50 to 60 msec in time. 59
5 Using Seismic Unix (SU) to plot BSEGY data, script psPlot-su used. 61
6 Plot of surface wave data using qplt. The qgraph.gp output file was edited to make a Postscript

figure, and that is shown here. 62
7 First trace of figure 6 surface wave data using tplt. 63
8 Plots produced by traplt.m. (A). Time domain (B). Frequency Domain 64
9 Plots produced by profplot.m. 65
10 Source generates both horizontal and vertical motion . 66
11 Plan view of a typical survey. Coordinate system for geophone components and impact forces. . . 66
12 PCA result (file h141plt.ps) for near surface geophone station. 73
13 Deepest level (A) is 180 degrees off from desired as shown in (B) 74
14 Plot of channel 2 and channel 3 geophone azimuth headers. The apparent discontinuity at about

12.5 m depth is exaggerated by channel 3 passing through North, 0 deg. = 360 deg. 78
15 Plots produced by hodoplot.m confirms that data were rotated as desired 80
16 Difference of Source Polarizations, T-Component (bequ applied to twav.seg) 83
17 Sum of Source Polarizations, V-Component (bequ applied to pwav.seg) 84
18 Alignment T-component data by first break picks for QC . 85
19 T-component Data Travel Time Inversions (a) Vertical Time (b) Observed Time 85
20 Velocity analysis QC plot from file bvasqc.ps . 87
21 Summary plot showing velocity and semblance. 88
22 Amplitude decay analysis QC plot from file bampqc.ps . 89
23 Summary plot showing decay as a function of frequency . 90
24 Merged figure showing both velocity and decay . 93
25 Sample of cafwd3 calculations. (A) run without data (B) run with data for comparison 94
26 Sample of cafwd3 calculations. Quality factor varies with frequency. 94
27 Base map for refraction survey along road shoulder. 96
28 Plots generated with refplot.m. 97
29 Choosing an estimate of the cross-over distance at 30 meters. 98
30 Direct wave raypaths used by program direct.m . 98
31 Solution for overburden velocity is 923 m/s based on k004.seg, k008.seg, and k009.seg. 99
32 Simplified delay time setup. Shots A and B shoot into geophones 1 and 2. 99
33 Delay time solution for line along road shoulder. The structure plot has been squished vertically to

remove most of the vertical exaggeration in a simple figure. 102
34 Base map for refraction survey (line 3 goes up hill from the roadway) 103
35 Scaled k011.seg refraction data . 104
36 Trace 20 as seen in segpic.m run . 105
37 Line 3 solution, merged xfig plots. A). Arrival times and fit, B). Structural Solution (accepted), C).

Overburden velocity solution (rejected) . 109
38 Reciprocal shooting for refraction surveys across rivers. Bridge foundation investigations benefit

from placing the geophones on land, and the source suspended from the bridge in the river. 111
39 Array forming and filtering to enhance higher frequencies were needed to pick refractions. (A)

shows an array formed record with strong Rayleigh and SV wave content. (B) is a blowup of the
shallow data enhanced for P-waves by filtering. 114

LIST OF FIGURES 8

40 Solution from delaytmR.m analysis of 6 common geophone records and 3 constraints. Note, even
after squishing the plot, there is about 12:1 vertical exaggeration on the structure. 115

41 Color plot of semblance for example soil profile of Figure 42. The fundamental mode appears as
red. A weaker higher mode is also visible as a lighter shade of blue. 117

42 Example Rayleigh wave model with 0.1 meter step interpolation between control. The interpola-
tion is linear in elastic modulus or density. See section 7.3.2 for additional details. 118

43 Phase velocity computed by program disper for the model of Figure 42. 118
44 Source wavelet for synthetic Rayleigh wave seismogram, model of Figure 42. 119
45 Synthetic vertical component Rayleigh wave seismogram, model of Figure 42. See section 7.3.6

for further details. 119
46 Manual modeling with FwdR1.m, final trial (A) dispersion and (B) soil profile. Vs30 is in the title

bar of (B) assuming parameters remain constant down to 30 meters. 120
47 Automated modeling with invR1.m. Initial model and intermediate models are shown in cyan. The

3rd, terminating iteration, is shown in red. The fit can be compared to that achieved in Figure
46. The model is shown for the 3rd iteration and is tabulated in the caption of (B). Note that both
velocity and depth of control points were free to vary. 121

48 Automated modeling with invR1.m. (A) Dispersion as a function of wavelength. (B) Singular
values sorted by size. Only the 3 largest singular values were used (P=3). 121

49 SASW recording places two geophones about a center line. The FFT is used to perform a cross
correlation between the two signals in the frequency domain. The phase velocity dispersion curve
is computed from the phase of the cross correlation and knowledge of the geophone spacing. Un-
wrapping of phase is required to compute dispersion beyond the spatial Nyquist frequency. 122

50 (C). Geologan down-hole data. Octave program yulewalker.m is used to select trace 30. (A) Picking
a length of the autocorrelation (nlag=116), (B) Downhole data, (C) Selected signal trace 30, (D)
Yule Walker all pole spectral estimate. 123

51 (A) Picked portion of autocorrelation. Sets spectrum order at 156. (B) Input file from bstk of bxcr.
(C) Plot of the selected trace 30. (D) All pole amplitude spectrum. 124

52 Solution to Lamb’s Problem (after Mooney, 1974 [15]). Step function source. 125
53 Synthetic seismograms generated by lamb (see text for model) 128
54 Near and Far Field computations (source in x1, motion in x1 directions). The data have been trace

qualized by the L2 norm of each offset signal to prevent fading of the motion due to amplitude decay.130
55 Simple layer over a half space model used in the gendis man page. 133
56 Phase velocity curves computed for model in Figure 55. 135
57 Motion-stress vectors for simple layer over a half space model of Figure 55. A) Displacement

vectors, B) Stress vectors. Horizontal motion is R1, vertical motion is R2. Horizontal stress is R3,
vertical stress is R4. 136

58 Plot of vertical component motion, trace equalized to remove amplitude decay with offset. This
permits viewing the waveform changes with offset. Compare this to the horizontal motion in Figure
60. 140

59 Group velocities are available by plotting matu.m from within Octave. 140
60 Plot of horizontal component motion, trace equalized to remove amplitude decay with offset. This

permits viewing the waveform changes with offset. Compare this to the vertical motion in Figure 58.142
61 Wavelet plot from Octave program m0.m. Note that the bandwidth is less than conventional def-

initions would imply. When you set (fmin,fmax) in waves.d, you are basically setting nearly the
complete limit of frequencies. The program reduces the bandwidth to approximately 4 f min and
f max/2 . This figure has been enlarged to show detail with the axis command. 143

62 Plot of file bdifwavV.seg, differentiated wavV.seg simulates what a velocity geophone might see.
Compare to Figure 58. 144

63 Plot of file bdifwavV.seg, differentiated wavV.seg simulates what a velocity geophone might see.
Only near offset signals are shown for easier comparison. 144

64 (A). Correct waves computation of dispersion. (B). Illustrates too large a depth difference between
top and bottom of the discontinuity. The solution is to make the discontinuity more abrupt in
disper.d or decreasing stepz in waves.d to remove the glitches. 145

LIST OF FIGURES 9

65 (A). Kelvin-Voigt (KV) representation for both vibrator and wave assemblage. (B) Kelvin-Voigt-
Maxwell-Biot (KVMB) representation. 146

66 Octave program, kvKVMBscan.m, can be run to illustrate the effects which largely depend on
porosity. Shown are cases for different mass ratios of solid frame and pore fluid. 147

67 Octave program, kdKVMBscan.m, can be run to illustrate the effects which largely depend on
porosity and frequency of shaking. Shown are the case for 15 Hz shaking. The user can choose a
horizontal axis of either (A) hydraulic conductivity (m/s), or (B) “pore diameter (mm)” 148

68 Octave program, fqKVMBscan.m, can be run to illustrate the relationships possible between hy-
draulic conductivity and KV damping ratio, the metric for viscous friction. 148

69 Octave program, KD4kvmb.m prompts the user for porosity (n), stiffness (C1), damping (C2), fre-
quency of shaking and related uncertainties. Then when run, a display of the solution is given in
a message box. Also show is the graphical image of the process. The C1 and C2 values produce a
KV damping ratio that is represented by the horizontal line that intersects the KVMB to KV curve.
The two intersections are the solution. 149

70 A section of data from 40 to 60 seconds. Note the vertical time scale is different than that in Figure
71. The large amplitude slow trend (approximately 14 km/hr) in the lower left appears to be a motor
vehicle while the remaining events appear to be waves propagating in the soil (approximately 150
to 200 m/s). 151

71 BCOR: Cross correlation of Figure 70 data from 40 to 60 seconds. Zero lag is at 2.0 seconds. The
event starting at 2.0 seconds on the left appears to present a horizontal velocity of about 150 m/s. . 151

72 BIMG: Data from Figure 70, time gate 0 to 100 seconds processed for trace offsets from 1 to 33.
A larger time gate improves the statistics of the stack. The average spacing is 3 meters per trace.
Only half of the available offsets are used to build up the stack. Note the time scale is 0 to 4.0
seconds with zero lag at 2.0 seconds. 152

73 BIMG: Output file BIMGdata.seg mixes both causal and acausal arrivals. Note that the time scale
is 0 to 2.0 seconds with zero lag at 0 seconds. The interval from 2 to 0 seconds in Figure 72 is time
reversed and mixed with the 2 to 4 seconds interval. This mixes both directions of arrival. 153

74 GENBIMG: Output file STAK.seg is the sum of the BIMGxxxx.seg files for the different time
windows. Note that the time scale is 0 to 2.0 seconds with zero lag at 0 seconds. Mix was set to
zero. 156

75 GENBIMG: Output file STAK.seg is the sum of the BIMGxxxx.seg files for the different time
windows. Note that the time scale is 0 to 2.0 seconds with zero lag at 0 seconds. Mix was set to 3. 157

76 BVAX applied to data in Figure 75. The range of offsets were 10 to 100 m, velocity search 100 to
800 m/s, frequencies 2 to 30 Hz. Error bars are for 95% confidence. 157

1 DESCRIPTION OF BSU 10

1 Description of BSU
Basic Seismic Utilities (BSU) is a collection of seismic signal processing programs. Also included in BSU are
some modeling programs (computation of the near-field, and solution to Lamb’s problem). These programs are
written in Fortran 77 and the C-language. At the time of this writing, the software community is moving from
Fortran77 to “gfortran”. The g77 codes compile well under gfortran, and the only major issue is linking to the
correct versions of libraries like “lapack” and “gsl”. Libraries must be compiled with the same compiler that you
will be using for compiling BSU. Since PLPLOT no longer supports g77, some codes have been converted to
Fortran 90. When looking at source code, if the file name ends in *.F90, it is Fortran 90, and if it ends in *.f,
the code format will be the older style. The configuration script should handle most situations. Tips for different
Linux distributions can also be found in the README_* files included in the TAR archive (the * represents your
operating system distribution or environment, like Debian, Ubuntu, CentOS, Mingw32, etc).

The binary data file format of BSU (BSEGY) is derived from SEG-Y (omit the reel header, 240 byte trace
header, floating point data, 4 bytes per sample value). This format is compatible with the Seismic Unix (SU)
(Cohen [3]) package (Colorado School of Mines, CWP), but differs in some optional header definitions. While
SU is designed primarily for CDP reflection data, BSU is designed for engineering geophysical surveys (down-
hole, refraction, near field, and surface waves). The BSU package is well suited for 3-component data collection
(headers include source and geophone polarization information). Crooked line and data acquisition in irregular
patterns are easily handled by geometry setting procedures which integrate electronic distance measuring survey
files (NEZ) with the file formats from common engineering seismographs (SEG-2 and BISON). The BSU package
also includes Octave|Matlab procedures for reading the BSU binary file format, BSEGY.

These codes were written over a number of years, some as early as 1967 (26 keypunch, BCD, later 29 keypunch,
EBCD, up to the present state of affairs). Do not be surprised that the code is a bit patch worked and mixed
language. It was not designed, but evolved. As I look backward, a lot has changed since my first connection
between two computers in the military and the present day Internet with the WWW.

Finally, BSU evolved to fill needs I have had as a practicing engineering geophysicist, and to serve my needs
in research and education. Like SU, it is meant to be compiled, modified, and extended. If you read further, you
will find that the Fortran and C-language masters (bmst.f and cmst.c) provide enough of an example to have one
programming in BSU within a day. There are usually 3 steps:

1. Read a trace (bsegin.f or c_bsegin.c)

2. Do some computations.

3. Write a trace (bsegout.f or c_bsegout.c)

1.1 What’s New in BSU-3.0.3
• Increased Signal Length A significant change is a doubling of the number of samples permitted in a seismic

trace. The BSEGY headers followed much of what was defined in the SEG-Y header format, including a 16
bit integer for the number of samples. It appears that Fortran has not supported unsigned integers. In earlier
versions of BSU, this meant that only 215 = 32768 samples were permitted due to the 16 bit signed integer
header. To overcome this limit, I have mixed a bit of C-language code as functions that can be called from
Fortran 77 or Fortran 90. These functions have been added to the sublibF4 library and are:

– usignint(unsigned short *ivalue, int *ovalue) This converts an unsigned short to a 4 byte integer
using a simple cast.

– usignont(int *ivalue, unisgned short *ovalue) This converts a 4 byte integer to an unsigned short
integer using a simple cast.

This permits BSU-3.0.3 to handle traces with up to 216 = 65536 samples per trace. CAUTION: Be aware
that this means that converting BSEGY data to SEG-Y files may lead to issues with other 3rd party software
written in Fortran (which can only handle reading SEG-Y with the assumption of a signed 16 bit integer trace
length). If you wish to send data in the SEG-Y exchange format to a Fortran package, simply use program
BEDT to break it up into two files and then apply BCNV to do the conversion from BSEGY to SEG-Y. See
the separate document, RunningBSU-3.0.3.pdf, for details on running any of the BSU programs.

1 DESCRIPTION OF BSU 11

• ba2s.c Fixed a field separator, increase number of characters to 5 million per row.

• segd2seg.c New program to read SEG-D exchange formatted data. Limited functionality given the enormous
number of possible situations. A work in progress.

• xcor.f Improved precision from real*4 to real*8

• bplt.c Added an alternative time axiss to switch to seconds for large recording times.

• bcor.f New program to cross correlate one trace with all others. Possibly useful in passive data collection
and seismic interferometry.

• bimg.f New program to conduct seismic interferometry. Creates a virtual shot gather by cross correlating
traces and mixes traces with common offset separations. Produces a causal and acausal result (left and right
traveling wave fields) in one output file. Time reverses one and mixes directions into a single file. Can filter
out broadside waves. Designed for phones deployed along a road for passive recording.

• genbimg.c New program to create a BASH script that runs BIMG program with sliding windows. Output
script is named gobimg.

• bdec.c New program to decimate traces in a gather.

• bnois.f Modified random noise function to improve length of randomness.

• genwav.F90 Modified to remove a “/” in source namelist which prevented reading alternative shot coordi-
nates, for example needed for a split spread geometry. Just a dumb bug.

• bsg2.c New code to convert from BSEGY to SEG-2 data format.

• wav2txt.c New program reads an audio WAV file and outputs as ASCII text. Two channel (stereo) limit.

• bvax.F90 Modified to internally sort traces by offset before filtering. This improves limit code by offset in
cases of split spread and other geometries.
First run BSRT for earlier versions of BSU, recommend work-a-round for BVAX when gather is not off-end
shooting.

• waves.F90 Improved geometry setting on synthetic Rayleigh wave seismograms when not off end source.
Improved scale factor setting on geometry headers.

• mseed2seg.c New code added to convert from Miniseed format to BSEGY and ASCI with a plot. Requires
libmseed. This IRIS library can be found at: https://github.com/iris-edu/dataselect/releases

• bcor.f Cross-correlate a selected trace in a shot gather with all other traces in that gather.

• bimg.f Cross-correlates traces in a shot gather by relative offsets. Output is sorted by offset between pairs,
near to far making a pseudo shot gather.

• genbimg.c Helper program that generates a Bash script, “gobimg”, that calls bimg. Correlation windows
are defined over time and range.

• bazi.F90 Horizontal hodogram PCA analysis to locate seismic source.

• genbazi.c Helper program to generate a Bash script that will run a sliding window in time by invoking
multiple calls to bazi.

• bzrt.F90 Vertical hodogram PCA analysis to study major axis of polarization ellipse in vertical plane.

• genbzrt.c Helper program to generate a bash script that will run a sliding window in time by invoking
multiple calls to bzrt.

• hvsr.F90 Computes the ratio of vertical to horizontal (H/V) spectral ratios for multi-component data.

• sac2seg.c Converts from SAC format https://www.iris.edu/hq/ to BSEGY. Also produces ASCII and Gnuplot
files.

• bxof.c Extract traces by signed offset range. Sign selects which side to extract for split spread cables.

https://github.com/iris-edu/dataselect/releases
https://www.iris.edu/hq/

1 DESCRIPTION OF BSU 12

1.2 What Changed BSU-3.0.1→ BSU-3.0.2
This release is a complete rebuild and debug of earlier versions. There have been significant changes to make the
project more easy to use for Microsoft users (cross-compiling on Linux to create *.exe binaries), and a number
of new coding decisions have been made for both Linux and Microsoft users. In addition, the project has been
successfully compiled on Apple’s Macbook Pro platform. Upgrade to Debian 10 from Debian 9 requires changes
again to PLPLOT library configurations.

• PLPLOT The pkg-config files have changed names for Fortran. Debian 9 used plplotd-f95.pc. Now,
Debian 10 packages use the file name plplot-fortran.pc.

• Program seg2dump.c Does a raw dump of SEG-2 formatted files. Dumps to a text file exactly how
numbers stored before applying any corrections (as in the case with egg2seg or topcon2).

• Program genwaw.c A geometry setting program which is helpful for walk-a-way shooting and non pattern
situations. Use with SEG-2 format data.

• Octave | Matlab Scilab programs have been replaced with Octave programs. In most cases, Matlab will also
run these with just a few exceptions. The exceptions are primarily those cases which depend on disper.oct
(FwdR1.m, invR1.m moho.m, mastercurve.m and rayleigh.m).

• disper.oct This is an ELF LSB shared object which should be compiled after installing BSU on an operating
system. The build_disper.oct script is found with all the *.m files in either the source code (Octave directory)
or when installed, in the /usr/local/share/octave/site-m directory.

• Fortran 90 vs g77 Since PLPLOT no longer supports Fortran 77, several programs were converted to
Fortran 90. Thes programs include: bamx.F90, bamp.F90, bhod.F90, caplot.F90, bvax.F90, bvas.F90,
genwav.F90, and waves.F90. All the Fortran 77 codes remain with the *.f suffix.

• Gnuplot Due to PLPLOT dependency problems on some platforms and the incompatibilities that have de-
veloped during revisions of PLPLOT, the configuration script now permits using Gnuplot as an alternative
to PLPLOT. The default is to compile with Gnuplot. To compile with PLPLOT, the user must decide on
the new or old version of PLPLOT. Old in this context would be version 5.9.9-5. An instance of the New
PLPLOT would be version 5.10.0. If you are running the Old version, the configuration command would
be configure –with-plplotlib –with-plplot-old. If you are running with the New version, the command
would be configure –with-plplotlib. NOTE: with these options, two dashes precede the “with” and one
dash “plplot”.

• Cygwin replaced with Mingw32 Microsoft windows users often had problems recognizing the need
to install Cygwin to run BSU codes. So Cygwin has been dropped, most of the codes have been cross-
compiled for Microsoft windows using Mingw32. The result is a collection of static compiled files ending
in the suffix *.exe. These can be run directly on a Microsoft platform from a Microsoft terminal (Power
Shell is preferred). The static built binaries are a bit larger than they would be with shared libraries, but that
greatly reduces the number of dependency issues. Still, it is highly recommended that Microsoft users install
a windows version of Gnuplot to take full advantage of the graphics capabilities. It is also recommended
that Microsoft users install a windows version of Mingw32 to take advantage of the many linux commands
which become available in Power Shell (but this is only a recommendation, the *.exe files should run on
their own).

• Program bis2seg.c The conversion from Bison formatted data to BSEGY format code has been fixed to
correctly convert Bison Floats. The integer format worked OK, but Bison floats are quite different from
most standards (Bison uses a 16 bit 2’s complement mantissa, 4 bit exponent normalized float, in effect a
2.5 word format in the context of a Bison data bus). Conversion of Bison floats requires examining the 4 bit
exponent (is it greater than 7? If so, then is a negative number). This 20 bit code revision was inspired by
Jens Hartmann code found in Center for Wave Propagation, CWP Third Party codes found in Seismic Unix.
However, the Hartmann code may need revision to work with floats (as did mine). The problem is that Bison
float data are fairly rare in the wild. I only discovered this problem when I encountered some Bison float
data.

1 DESCRIPTION OF BSU 13

• Program ba2s.c Revised code, converts ASCII format file to a BSEGY binary file, row or column order
for the time axis.

• Program seg2csv.c New code to convert from BSEGY to Comma Separated Variable (CSV spreadsheet
format).

• Program tplt.c New code to plot a single signal in a multi-trace BSEGY file using Gnuplot (no PLPLOT
version of this). The result is an interactive plot in the window system, and an output file, graph.gp, which
is in the Gnuplot language. One can edit the graph.gp file for a different output terminal or file type.

• Program qplt.c New code to quickly plot all signals in a BSEGY file using Gnuplot (no PLPLOT version
of this). The result is an interactive plot in the window system, and an output file, qgraph.gp, which is in
the Gnuplot language. One can edit the qgraph.gp file for a different output terminal or file type.

• Program seg2txt.f Converts BSEGY data to ASCII text file, time in row order.

2 OBTAINING AND INSTALLING BSU 14

2 Obtaining and Installing BSU
The BSU package can be down loaded from my web page at https://www.boisestate.edu/earth/staff-members/paul-
michaels/ or at https://173.255.241.228. Click on the download link and find the format for your distribution or
operating system.

2.1 Package Managers
• APT Package Manager – For Debian, Mint, Ubuntu, Xubuntu, there is a *.deb package. For best practice,

build from source.

• Slackpkg Package Manager – For Slackware, the best approach is to build from the source (see next
section).

• Pacman Package Manager – For Arch the best approach is to build from the source (see next section).

• RPM Package Manager – For CentOs, Redhat Enterprise, OpenSuse there is an *.rpm package. For
best results, build from the source.

• Apple Package Management – For users with Apple products like the MacBook Pro, the best approach is
to build from the source. The Apple environment has a number of package managers (Fink, Brew, MacPorts),
and detection of the Darwin system is included in the configuration script. Because there are multiple
possible package management instances in a single system, the user is cautioned to avoid crashing installed
directories. CAUTION: Apple default file system is not case sensitive. File names with upper or lower
case names will be viewed as being the same.

• Microsoft Package Manager – There is no install wizard. For Windows XP, 8.1, or 10, the user may
download a ZIP archive of static compiled *.exe files. These have been cross-compiled on a Linux host using
the MingW32 tool chain. Simply download BSU_EXEC-3.0.3.zip and unzip the archive in an executable
directory which is in your execution path. The man pages are available for download in man-bsu3-html.zip
and can be viewd using a web browser. The Octave scripts are available in Octave.zip, but some codes will
not work if they require disper.oct. To build that, you will need a windows equivalent of mkoctfile on your
system, in addition to a windows version of Octave. I recommend that the windows user run the codes in
a PowerShell environment. Further, to increase the utility of the codes, I recommend that the user install
a windows MingW32 package. CAUTION: Windows file system is not case sensitive. File names with
upper or lower case names will be viewed as being the same.

• Chrome Books and APT Package Management – For Chrome book users, the source can be compiled
if developer mode is installed. Be aware of your CPU (Intel or Arm), since you will want to make sure
any dependencies are met with the same CPU. I was able to compile on a Samsung Chrome Book set to
developer mode with Crouton and XFC4 window manager, and an armv7l CPU. See the next section for
more details.

2.2 Compile Tips
If you wish to compile the codes, a traditional Linux location will be in the /usr/local directory tree (I untar the
archive in /usr/local/src). This produces the top directory in /usr/local/src/bsu-3.0.3, and that is where you will issue
the configure command. To learn about alternative options, issue the command “configure -help”. For example,
to compile with the GNUPLOT alternative, just “configure” will work. To use the PLPLOT options, the configure
command would be “configure --with-plplotlib ”. In addition, you might also need the old version of PLPLOT
libraries. In that case, “configure --with-plplotlib --with-plplot-old” would be the command to invoke.

2.2.1 Most Common Problem

The most common problem will be an unmet dependency. These are often caught by the configuration process.
The solution on Linux is to use your package manager and add a missing package (you need gfortran to compile
fortran for example). The other issue may be a missing library. For example, on Debian 8 (Jessie), the bplt.c code

https://www.boisestate.edu/earth/staff-members/paul-michaels/
https://www.boisestate.edu/earth/staff-members/paul-michaels/
https://173.255.241.228

2 OBTAINING AND INSTALLING BSU 15

requires the libshp-dev package be installed. Different Linux distributions package things in different ways, so
read the error message if you get one, and start looking for the missing dependency.

“locate” command Highly recommend installing the locate program for your OS. Configure can use that to
find missing dependencies. Be sure to update your locate database after installing the locate package, if you have
not already done so. Example: sudo updatedb.

2.3 Building From Source
The following gives my experience on a number of systems when building BSU from the source tar archive. These
tips and comments will have a limited lifetime since the build environment and dependencies will always be in a
state of change over time.

Dependencies like Plplot and Gnuplot are difficult to support in a single configure script, since these can change
at any moment. In particular, Plplot libraries have at times even changed the names of some function calls in a
non-backward compatible way. The current configure script includes an option to use Gnuplot as an alternative
to Plplot if one becomes desperate. But even Gnuplot has introduced some changes, so one should note which
versions of Gnuplot and Plplot exist on the user’s system. Some codes only use GNUPLOT, so you will need
GNUPLOT installed for those codes to compile, regardless of your decision on PLPLOT for the codes which
can compile either way.

2.3.1 Dependencies

The following should be installed on the system:

• libblas and (libblas-dev see last item below 2.3.1)

• liblapack and liblapack-dev

• libgsl, gsl-bin (GNU scientific library)

• libgfortran, gfortran (compiler for fortran)

• gcc (compiler for C-language)

• gnuplot (plotting package)

• plplot (best plots, but is optional, default configure uses gnuplot)

• libshp (needed by plplot)

• Development packages for libraries (blas, lapack, gsl, plplot) These will end with -dev or -devel in the
package name for APT or RPM respectively.

• libmseed. This IRIS library can be found at: https://github.com/iris-edu/dataselect/releases

2.3.2 General Directions

The recommended location to untar the archive file, bsu-3.0.3.tar.gz, is /usr/local/src. There are two
major ways to compile BSU software. While some codes will always use GNUPLOT for some graphics, PLPLOT
will often result in the best results for those codes that have this as an option. While you could change into directory
bsu-3.0.3 and then issue build commands, an alternative is to leave that directory alone and create some alternative
build directories that refer back to that directory (see section 2.3.3.2 below for details). However, if you wish to
work in the bsu-3.0.3 directory, these will be the build commands:

configure options if any

make

make install

https://github.com/iris-edu/dataselect/releases

2 OBTAINING AND INSTALLING BSU 16

sudo ldconfig
(this last command may be needed and directs the system to use the shared libraries that are built)

NOTE: On linux, have the locate command installed and update the database before configure (update db) for
best results.

2.3.3 Debian 10 Buster

This is the build environment most likely to work (it is my OS). Refer to the general directions, 2.3.2, above when
opening the TAR archive. Debian 11 has compiled without any configuration changes.

2.3.3.1 Debian 10 Dependencies (at time of this writing)

Install PLPLOT, BLAS, LAPACK development packages and locate package
liboctave-dev (needed for mkoctfile)
libblas-dev:amd64
libblas3:amd64
libgslcblas0:amd64
liblastfm5-1:amd64
libopenblas-base:amd64
liblapack-dev:amd64
liblapack-doc
liblapack-doc-man
liblapack3:amd64
liblapacke:amd64
liblapacke-dev:amd64
libplplot-dev
libplplot-lua:amd64
libplplot-ocaml
libplplot16:amd64
libplplotcxx14:amd64
libplplotfortran0:amd64
libplplotqt2:amd64
libplplotwxwidgets1:amd64
octave-plplot:amd64
plplot-doc
plplot-driver-qt
plplot-driver-wxwidgets:amd64
plplot-driver-xwin:amd64
plplot-tcl
plplot-tcl-bin
plplot-tcl-dev
python3-plplot
python3-plplot-qt

2.3.3.2 Directories to Create Untar bsu-3.0.3-tar.gz in /usr/local/src. This will create a directory,
/usr/local/src/bsu-3.0.3. Then make one of the following directories to do the build in:

/usr/local/src/bsu+plplot
/usr/local/src/bsu+gnuplot

Choose which way to build and install.

• bsu+gnuplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

2 OBTAINING AND INSTALLING BSU 17

../bsu-3.0.3/configure >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

• bsu+plplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

../bsu-3.0.3/configure --with-plplotlib >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.4 Slackware

Follow the general directions, 2.3.2, above when opening the TAR archive. These instructions are based on version
14.2 of Slackware. If you don’t have BLAS, LAPACK, and PLPLOT installed yet, these dependencies should be
built first. PLPLOT uses cmake, and you may need to make sure that your version is compatible with the PLPLOT
version. Build the dependencies as follows in /usr/local/src.

• plplot-5.11.1 First build plplot shared libraries. To do this, untar and cd into plplot-5.11.1

mkdir build_dir
cd build_dir
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ../ >& cmake.out
make >&make.out
make install >&install.out

• BLAS Build BLAS static library, untar BLAS-3.8.0 and cd into BLAS-3.8.0

make Makefile
cp blas_LINUX.a /usr/local/lib/libblas.a

• LAPACK Build LAPACK and more BLAS libraries, untar lapack-3.8.0, cd into lapack-3.8.0

ln -s make.inc.example make.inc
make all

[Note: it may bomb on testing, Makefile has specific targets]
When done with any extra make targets, should have
liblapack.a
libtmglib.a
librefblas.a
libcblas.a
Can install with copy command:

cp lib*.a /usr/local/lib

• BSU-3.0.3 Untar bsu-3.0.3 in /usr/local/src, then build in either a gnuplot or plplot directory. ONLY install
one or the other, gnuplot or plplot. Best graphics with plplot.

– bsu+gnuplot

2 OBTAINING AND INSTALLING BSU 18

mkdir /usr/local/src/bsu+gnuplot
cd bsu+gnuplot
../bsu-3.0.3/configure >&configure.out
make
make install
sudo ldconfig

– bsu+plplot

mkdir /usr/local/src/bsu+plplot
cd bsu+plplot
../bsu-3.0.3/configure --with-plplotlib >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.5 Arch Linux

Follow the general directions, 2.3.2, above when opening the TAR archive.

• plplot-5.15.0 Build plplot shared libraries, untar and cd into plplot-5.15.0. Note, cmake is like configure
in other build situations. WARNING: When building plplot with cmake, more than one instance may exist
after installing the library. The BSU configure script uses ”locate“ and looks for the first instance, so you
may wish to remove the plplot in the build directory, leaving only the installed to be found. It may work
without this, but maybe not.

mkdir build_dir
cd build_dir
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ../ >&cmake.out
make >&make.out
make >&install.out

• xfig Build xfig if you wish to use it, untar xfig-3.2.7 and then cd into xfig-3.2.7

configure
make
make install

• bsu-3.0.3 Build bsu-3.0.3, untar. Then build in either a gnuplot or plplot directory. Untar bsu-3.0.3.tar.gz
in /usr/local/src directory. Decide on building with either PLPLOT or GNUPLOT. ONLY install one or the
other, gnuplot or plplot. Best graphics with plplot.

– bsu+gnuplot From /usr/local/src:

mkdir bsu+gnuplot
cd bsu+gnuplot
../bsu-3.0.3/configure >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

– bsu+plplot From /usr/local/src:

2 OBTAINING AND INSTALLING BSU 19

mkdir bsu+plplot
cd bsu+plplot
../bsu-3.0.3/configure --with-plplotlib >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.6 CentOS 7

Follow the general directions, 2.3.2, above when opening the TAR archive. The tested build was done on Kernel
3.10.0-1127.19.1.el7.x86_64, 64 bit system.

2.3.6.1 Dependencies (at time of this writing) Install PLPLOT, BLAS, LAPACK and development packages:

lapack-3.4.2-8.el7.x86_64
lapack-devel-3.4.2-8.el7.x86_64
lapack-static-3.4.2-8.el7.x86_64
blas-3.4.2-8.el7.x86_64
blas-devel-3.4.2-8.el7.x86_64
blas-static-3.4.2-8.el7.x86_64
plplot-5.10.0-10.el7.x86_64
plplot-ada-5.10.0-10.el7.x86_64
plplot-ada-devel-5.10.0-10.el7.x86_64
plplot-devel-5.10.0-10.el7.x86_64
plplot-doc-5.10.0-10.el7.noarch
plplot-fortran-devel-5.10.0-10.el7.x86_64
plplot-java-5.10.0-10.el7.x86_64
plplot-java-devel-5.10.0-10.el7.x86_64
plplot-libs-5.10.0-10.el7.x86_64
plplot-lua-5.10.0-10.el7.x86_64
plplot-perl-5.10.0-10.el7.x86_64
plplot-pyqt-5.10.0-10.el7.x86_64
plplot-qt-5.10.0-10.el7.x86_64
plplot-qt-devel-5.10.0-10.el7.x86_64
plplot-tk-5.10.0-10.el7.x86_64
plplot-tk-devel-5.10.0-10.el7.x86_64
plplot-wxGTK-5.10.0-10.el7.x86_64
plplot-wxGTK-devel-5.10.0-10.el7.x86_64
xfig-3.2.5-44.c.el7.x86_64
xfig-common-3.2.5-44.c.el7.x86_64

2.3.6.2 Directories to Create Untar bsu-3.0.3-tar.gz in /usr/local/src. This will create a directory,
/usr/local/src/bsu-3.0.3. Then make one of the following directories to do the build in:

/usr/local/src/bsu+plplot
/usr/local/src/bsu+gnuplot

Choose which way to build and install.

• bsu+gnuplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

../bsu-3.0.3/configure >&configure.out

2 OBTAINING AND INSTALLING BSU 20

make >&make.out
make install >&install.out
sudo ldconfig

• bsu+plplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

../bsu-3.0.3/configure --with-plplotlib >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.6.3 Alternative Approach One can download the latest PLPLOT source archive and compile it. But to
build it, you need a newer version of CMAKE. Files to download at the time of this writing from the home web
pages of CMAKE and PLPLOT projects are:

cmake-3.18.3.tar.gz
plplot-5.15.0.tar.gz

• CMAKE Untar the source in /usr/local/src. Then,

cd cmake-3.18.3
mkdir build
cd build
../bootstrap && make && sudo make install

• PLPLOT Untar the source in /usr/local/src. Then,

cd plplot-5.15.0
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ../ >& cmake.out
make
make install
cd ..
rm -r -f build (to avoid multiple instances of plplot-fortran.pc, etc)
sudo updatedb (so configure calls to locate can find *.pc files etc)

NOTE: The jpeg driver was not available, so a work-a-round is to manually reply with SVG when programs
like BPLT pause. Clearly, there is room for improvement with CENTOS 8. No problems like this with
CENTOS 7 or other operating systems like Debian 10.

• BSU-3.0.3 Build as in the case for CENTOS7 (see 2.3.6.2).

2.3.7 Chrome Book

Follow the general directions, 2.3.2, above when opening the TAR archive. The build was done on Kernel 3.8.11
armv7l, 64 bit system.
Switch to developer mode.
https://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices
Then install Crouton and the Ubuntu Trusty release.
https://github.com/dnschneid/crouton
Crouton – Switch to a linux crosh terminal (Ctrl+Alt+T) and sudo startxfce4.

https://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices
https://github.com/dnschneid/crouton

2 OBTAINING AND INSTALLING BSU 21

2.3.7.1 Dependencies Install the following packages if you installed the Trusty release of Ubuntu.

gsl-bin
libgsl0-dev
libgsl0ldbl
cl-plplot
libplplot-c++11
libplplot-dev
libplplot-fortran11
libplplot-java
libplplot-lua
libplplot-ocaml
libplplot12
plplot-doc
plplot-tcl
plplot-tcl-dev
plplot12-driver-gd
plplot12-driver-qt
plplot12-driver-wxwidgets
plplot12-driver-xwin
python-plplot
python-plplot-qt
liblapack-dev
liblapack3
libblas-dev
libblas3
gnuplot
gnuplot-nox
gnuplot-x11
xfig
xfig-libs
octave
octave-common
liboctave-dev
liboctave2:armhf

2.3.7.2 Libmseed dependency Download a tar archive from IRIS. This version has been tested (libmseed-
2.19.4.tar.gz). Untar the source for the library in /usr/local/src directory. Execute the make command and then
copy the static library libmseed.a to /usr/local/lib. Copy the file libmseed.h to directory /usr/local/include.

2.3.7.3 Build BSU-3.0.3 Untar bsu-3.0.3.tar.gz in the /usr/local/src directory. Then make one of the following
directories to do the build in:

/usr/local/src/bsu+plplot
/usr/local/src/bsu+gnuplot

Choose which way to build and install.

• bsu+gnuplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

../bsu-3.0.3/configure >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2 OBTAINING AND INSTALLING BSU 22

• bsu+plplot Change into this directory, then issue commands. The *.out files record what happened if there
is a problem.

../bsu-3.0.3/configure --with-plplotlib >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.8 MacBook Pro

Follow the general directions, 2.3.2, above when opening the TAR archive.

• GNUPLOT Build The tested build was done on OSX Sierra, Darwin, kernel 16.1.0, 64 bit system. From
the top directory one runs configure with appropriate options. Choose one of the following (note: options
start with a double dash “- -“ before the ”with” and a single dash after the “with“:

configure

make

make install

• PLPLOT Build To build using PLPLOT is highly desirable from a graphics point of view. What has been
tested is to first install CMAKE on the MacBook, and then compile plplot-5.15.0 using CMAKE. Once
the PLPLOT libraries are built, then compile bsu-3.0.3. Assuming all this has been done, and environment
variables set (see red text), build BSU as follows:

export LIBS=-lplplotcxx -lplplot

export PKG_CONFIG=/sw/bin/pkg-config

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

configure --with-plplotlib

make

make install

sudo ldconfig

• Compiling plplot-5.15.0 In order to do the above, do the following, checking the *.out files at each step for
errors.

cd /usr/local/src

tar xvzf plplot-5.15.0.tar.gz

cd plplot-5.15.0

mkdir build_dir

cd build_dir

cmake -DCMAKE_INSTALL_PREFIX=/usr/local -DENABLE_java=OFF -DENABLE_python=OFF \
../ > &cmake.out

make > &make.output

make install > &make_install.output
The libraries will be installed under /usr/local/lib and will have name endings of *.dylib .

2 OBTAINING AND INSTALLING BSU 23

WARNING Case Sensitivity: One other thing to be aware of is that Mac file systems are typically defaulted
to not be case sensitive. This can be a big problem, like on Microsoft Windows computers. An output file
from a process may have upper case, like ”STAK.seg“, and another process might write ”stak.seg“ for the
output. In that case, the second output file will clobber the first.

Depending on what else is installed, you may not get full functionality on the plplot devices (like jpg), but
you will likely get postscript. Be sure to install following for xwin device:

wxBase-2.8.12-20.el7.x86_64
wxGTK-2.8.12-20.el7.x86_64
wxGTK-devel-2.8.12-20.el7.x86_64
wxGTK-gl-2.8.12-20.el7.x86_64
wxGTK-media-2.8.12-20.el7.x86_64

MACBOOK TIPS
The fact that there are more than one package manager that might be used, and that dependencies might be installed
in different locations makes a configure script challenging. The following gives the choices that will work with the
current configure script when run on a MacBook Pro.

Fink Package Management – Packages are installed under /sw directory. This is very good and avoids conflict
with other install locations from other package managers like Homebrew or Macports. The default install
location of BSU is /usr/local.

X11 Environment – I installed XQuartz to get X11 running on Darwin. WARNING: if you update your system,
you likely will need to reinstall XQuartz since Apple’s update procedures may break XQuartz.

GSL: GNU Scientific Library – This test installed GSL using Fink. Configuration builds make files with
AM_CFLAG= -I/sw/include and GSL_LIB=-L/sw/lib

Macport installs under /opt directory tree.

Homebrew installs under /usr/local. This can be a problem if BSU is also installed under /usr/local (the
default). WARNING: If Octave is installed using Homebrew, it likely will break gfortran for the BSU build.

Fortran and Darwin – Configure tests if Darwin, then compiles most of fortran codes with -static flag, sublibF4
since libsubF4.so does not pass common block /header/ to main programs.

2.3.9 Redhat Enterprise

Follow the general directions, 2.3.2, above when opening the TAR archive. This instance is for Red Hat Enterprise
Linux Server release 7.7 (Maipo) Kernel: Linux 3.10.0-1062.4.1.el7.x86_64 .

• Dependencies Install MLOCATE, BLAS, LAPACK development packages using the package manager, like
yum:

mlocate-0.26-8.el7.x86_64
blas-3.4.2-8.el7.x86_64
blas-devel-3.4.2-8.el7.x86_64
lapack-3.4.2-8.el7.x86_64
lapack-devel-3.4.2-8.el7.x86_64

• PLPLOT Build and install plplot [Note cmake-2.8.12.2-2.el7.x86_64 is available with this OS, so you can’t
use the most recent plplot 5.15.0 which requires a more advanced version of cmake]

• bsu-3.0.3 Untar bsu-3.0.3.tar.gz in /usr/local/src. Then build in either a gnuplot or plplot directory. ONLY
install one or the other, gnuplot or plplot. Best graphics with plplot.

– bsu+gnuplot From /usr/local/src:

2 OBTAINING AND INSTALLING BSU 24

mkdir bsu+gnuplot
../bsu-3.0.3/configure >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

– bsu+plplot From /usr/local/src:

mkdir bsu+plplot
../bsu-3.0.3/configure --with-plplotlib \
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig >&configure.out
make >&make.out
make install >&install.out
sudo ldconfig

2.3.10 Microsoft Windows

BSU is best run from a PowerShell. There are several options.

• A static build is available on the website, BSU_EXEC.zip. This is a precompiled version that just includes
binaries and assumes that gnuplot has been installed on the Windows platform. Unzip it in a directory that
is in your execution path.

• Cross-compile on a Linux system using MingW32. For this option, download Mingwbsu-3.0.3.tgz and untar
in /usr/local/src. Then change into the top directory.

make

make install

This will create a directory, EXEC, with all the *.exe binaries. For this to work, you will need to install the
MingW32 tool chain on your Linux platform.

• You can try taking the linux source tar archive and build it in cygwin. I have dropped cygwin support in bsu-
3.0.3 because most Microsoft users find cygwin a challenge, and don’t understand the relationship between
cygwin and Windows. Most Microsoft users will rather just install the *.exe files and be done with it. Man
pages are in man-bsu3-html.zip, Octave scripts in Octave.zip.

2.4 Octave
There are some octave programs included with BSU-3.0.3/Octave that will need to build an ELF LSB shared
object that extends the octave package. There is an executable script, build_disper_oct that can be run to create
disper.oct. This shared object is required for the following programs:

FwdR1.m – Computes Rayleigh wave forward problem, compares to data.

moho.m – Computes Rayleigh wave forward problem for a built in velocity profile.

rayleigh.m – Simple computation of Rayleigh wave forward problem example.

invR1.m – Inverse Rayleigh wave inversion with data.

mastercurve.m – Computes Rayleigh wave master curves for layer over half-space.

To build the shared object, be sure to have octave development package installed. For Debian users, this is
liboctave-dev-3.8.2-4.deb or later.

2 OBTAINING AND INSTALLING BSU 25

2.5 What to download
If you just wish to run BSU, download a binary package that matches your packaging system or compile from
the tar archive. If you plan on modifying or extending BSU, then you will want to download either a suitable
source package, or the source TAR archive. WARNING: Operating systems continue to evolve. Packages
quickly become obsolete. The APT and RPM packages in the table below will become obsolete at some
point, making building from the source code TAR archive a preferred route.

Operating System TAR (Source) File Binary Package Source Package
Debian 10 (Buster) OR bsu-3.0.3.tar.gz bsu_3.0.3-1_amd64.deb bsu_3.0.3-1.dsc
Debian 11 (Bullseye) bsu-3.0.3.tar.gz.asc bsu_3.0.3-1_amd64.deb.asc bsu_3.0.3.orig.tar.gz

bsu_3.0.3-1+plplot_amd64.deb
bsu_3.0.3-1+plplot_amd64.deb.asc

Debian 7 and 8 bsu-3.0.3.tar.gz none none
Ubuntu bsu-3.0.3.tar.gz none none
CentOS 7 bsu-3.0.3.tar.gz bsu-3.0.3-1.x86_64.rpm bsu-3.0.3-1.src.rpm

bsu-3.0.3+plplot.tar.gz bsu-3.0.3+plplot-1.x86_64.rpm bsu-3.0.3+plplot-1.src.rpm
Redhat Enterprise bsu-3.0.3.tar.gz none none
Open Suse bsu-3.0.3.tar.gz none none
Slackware bsu-3.0.3.tar.gz none none
Arch Linux bsu-3.0.3.tar.gz none none
MacBook Pro bsu-3.0.3.tar.gz none none
Chrome Book bsu-3.0.3.tar.gz none none
MicroSoft Win 8.1 MingwBSU-3.0.3.tgz BSU_EXEC-3.0.3.zip none

man-bsu3-html.zip html man pages
Octave.zip

NOTES: Above packages are 64 bit. Source code should compile on both 32 and 64 bit systems. The APT
package managed systems (Debian, Ubuntu, Mint) may work with packages for Debian 10 if they are at the Debian
10 level or more recent. The earlier versions of Debian should be compiled from source using appropriate configure
options (see above, sections 2.3.2 and 2.3.3).

The RPM package managed systems (CENTOS, Open Suse, Redhat Enterprise) have particular considerations.
Since CENTOS 7 has a conflict when installing under the /usr directory tree (but CENTOS 6 has no such conflict
with a filesystem package). So installing in the /usr/local directory tree was chosen in the *.spec files since that
location works for both versions of CENTOS.

The Microsoft case was compiled on Linux using the Mingw32 tool chain, producing most of the programs as
*.exe files that will run well in a PowerShell terminal. Just unzip the file BSU_EXEC.zip in a location of choice
that is included in the execution path.

In all cases, compiling from source is always an option, particularly if one wishes to add or modify codes in
BSU. The *.asc files are GPG detached signatures signed with my Key 4812C85C (see my web page for a copy of
the key).

2.6 Installing Binary Packages
The two package managers supported are APT (*.deb) and RPM (*.rpm). The supplied packages are limited to a
few instances of operating systems and versions. These are:

• Debian 11 bullseye (APT)

• CentOS 7 (RPM)

A challenge in building packages exists due to the versions of dependent packages. Once built, a package can
become broken or out of date as dependent packages evolve. The compressed TAR source archives contain package
building files (*.dsc for APT, *.spec for RPM). These provide a starting point for those wishing to build custom
packages for their own specific operating system instance. If you have a 32 bit system, these package building files
may also be useful if you wish to go the package route. Otherwise, the most likely route to success is to build from
the source (see section 2.3).

2 OBTAINING AND INSTALLING BSU 26

2.6.1 Debian, Mint, Ubuntu, or Chrome Book Install (APT)

The command to install BSU on a 64 bit machine with just Gnuplot graphics is:

sudo dpkg -i bsu_3.0.3-1_amd64.deb

If you wish to install on a 64 bit machine with Plplot, the command is:

sudo dpkg -i bsu_3.0.3-1+plplot_amd64.deb

If you wish to install static built executables (ONLY Gnuplot version), the command is:

sudo dpkg -i bsu_3.0.3-1+static_amd64.deb

These packages should work for both AMD and Intel cpu’s. As an alternative to ”dpkg -i“, I recommend using
the ”gdebi“ command, as it checks for dependencies. For example:

sudo gdebi bsu_3.0.3-1+plplot_amd64.deb

2.6.2 RedHat Package Install (RPM)

For systems using the RedHat package manager (rpm, yum, yumex, urpmi, rpmdrake), the command for the
Gnuplot only version is:

sudo rpm -ihv bsu-3.0.3-1.x86_64.rpm

For Plplot graphics in addition to Gnuplot, the CentOS-7 or CentOS-8 command is:

sudo rpm -ihv bsu-3.0.3+plplot-1.x86_64.rpm

2.6.3 Slackware or Arch Linux Package Install

There are no packages provided for these two systems at this time. It is left to the reader to build a slackpkg or
pacman package if desired. However, building from the source is recommended over building more packages.

2.6.4 MacBook Pro Darwin Package Install

There are no packages provided for the MacBook Pro or any Apple OS. It is left to the reader to build a package if
desired. However, building from the source is recommended over building more packages.

2.6.5 Microsoft Package Install

From within a power shell, create a directory for the *.exe executables or use an existing directory that is already
in your execution path. For example:

unzip BSU_EXEC-3.0.3.zip

This will install the static built executables (*.exe files). You will also need to install the Microsoft Windows
package for Gnuplot if the graphics are to work. Installing Mingw32 will add additional tools that may be of use,
but is optional. You can modify the execution path with a *.ps1 file: Documents\PowerShell\path.ps1. For
example, path.ps1 could contain this:

$env:path +=’;H:\MingW\bin;H:\MingW\msys\1.0\bin;H:\gnuplot\bin;H:\EXEC’

2 OBTAINING AND INSTALLING BSU 27

2.7 Installing Source Code
Installing the source code and compiling is essential if one wishes to extend or modify BSU. You might choose to
compile the software to adapt it to new shared libraries with a system upgrade.

cd /usr/local/src
tar xvzf bsu-3.0.3.tar.gz
cd bsu-3.0.3
./configure <build options>
make
make install

There are a number of options that may be given to the configure command. To see these, change to the source
top directory and issue the command (two dashes before help):

configure --help

2.7.1 TAR Source: Linux or Darwin

This is the best choice if you plan on editing or extending BSU. The old school approach to installing a TAR
archive (tarball) is to unpack the archive under the /usr/local/src directory tree. This would be desirable if
other users will want to execute the programs (to be installed in /usr/local/bin). This assumes that you have
write privileges in that directory (ie. you can be come root or use the sudo command for this purpose).

If you are working on a host machine that is administered by a university or business, and do not have write
privileges in /usr/local, or if you will be the only one using BSU, then you can do everything in your own home
directory tree.

Begin by downloading the following file into your home directory (see section 2 for the web address):

bsu-3.0.3.tar.gz

Change to the top directory where you will unpack the archive. Execute the tar command on the downloaded
file in your home directory. Then change into the bsu-3.0.3 directory. An example of the commands would be:

cd /usr/local/src
tar xvzf ~/bsu-3.0.3.tar.gz
cd bsu-3.0.3

Next, you can run the configure script specifying your explicit options. For suggestions on which configure
options to use on which operating system, see section 2.3.

2.7.1.1 Additional Hints on Configure Options Additional options that you may wish to customize are --prefix=
and --exec-prefix= options of configure. The prefix option controls where the executables, libraries, and man
pages will be installed.

• Building for Multiple users
An example of the command sequence follows. It assumes you have sudo or root privileges, and are in-
stalling software system wide. Assume you have installed the tar archive in /usr/local/src. Enter the
top directory, bsu-3.0.3, and then type the following commands in a terminal.

configure <desired options appropriate for your OS>
make
sudo make install

• Building for a Single user
The next example illustrates how BSU could be built in the home directory tree for use by a single user.
The example assumes you have created a local directory under you home, and unpacked the tarball under

2 OBTAINING AND INSTALLING BSU 28

this local directory. After changing into the bsu-3.0.3 directory, you would issue the following command
sequence.

export PREFX=${HOME}/bin
./configure --prefix=$PREFX --enable-shared=no \

--libdir=$PREFX/lib/bsu \
--includedir=$PREFX/include/bsu \
--datadir=$PREFX/share/bsu \
--docdir=$PREFX/share/doc/bsu

make
make install

Watch for warnings during the configure step. Common problems are often resolved by installing a
missing development library.

2.7.2 Install Source: Linux Packages

If you just want to compile the existing set of software and have an active packaging system like Debian (*.deb) or
“RedHat” (*.rpm), you could install the source package and compile it. In that case, download the needed package
as described in section 2.5.

2.7.2.1 Debian Source Package Build Place the following files in a working directory

bsu_3.0.3-1.diff.gz (<--if any exists)
bsu_3.0.3.orig.tar.gz
bsu_3.0.3-1.dsc

You should have installed both Fortran and C compilers. It is also good to have helper packages installed
(debhelper, dpkg-dev, dh-make, devscripts, lintian). Unpack the source with the following command:

dpkg-source -x bsu_3.0.3-1.dsc

Your screen will output the following (assuming a *.diff.gz file exists)

dpkg-source: extracting bsu in bsu-3.0.3
dpkg-source: unpacking bsu_3.0.3.orig.tar.gz
dpkg-source: applying ./bsu_3.0.3-1.diff.gz

Then change into the debian directory and use your favorite editor (like vi) to edit the changelog file:

cd bsu-3.0.3
cd debian
vi changelog

The changelog file will look something like this:

bsu (3.0.3-1) stable; urgency=low

* Initial release (Closes: #0000)

-- P. Michaels <paulmichaels@boisestate.edu> Fri, 09 Apr 2021 16:14:28 -0600

Modify the first line with some ID to indicate that the package has been built by you. Let’s say your initials are
“JMS”, then the modified file would look like this:

2 OBTAINING AND INSTALLING BSU 29

bsu (3.0.3-1JMS) stable; urgency=low

* Initial release (Closes: #0000)

-- P. Michaels <paulmichaels@boisestate.edu> Fri, 09 Apr 2021 16:14:28 -0600

This would be the minimum change. Changelog files have a rigorous format, so quit while you are ahead, and
save the modified file. Then move up a directory and execute the build command:

cd ..
dpkg-buildpackage -rfakeroot -uc -us

If all goes well, you will have a *.deb binary file built (it will be located in the same directory as the *.dsc file).
The new *.deb file can be installed as above in section 2.6.1. If all does not go well, it probably will mean that you
need to install a package or compiler, or something that BSU needs. Just read the error message.

2.7.2.2 Redhat Source Package Build Download the following file
bsu-3.0.3-1.src.rpm
You can either build it in the /usr/src/redhat directory tree, or somewhere else where you have write

privileges (like your home directory tree). An alternative location can be set with a .rpmmacros file in your home
directory. This is an example of my .rpmmacros file.

%packager P. Michaels <paulmichaels@boisestate.edu>
%vendor BSU
%_topdir /home/pm/redhat
%_prefix /usr
%_exec_prefix %{_prefix}
%_mandir %{_prefix}/share/man
%_datadir %{_prefix}/share
%_sysconfdir %{_prefix}/etc
%_bindir %{_exec_prefix}/bin
%_gpg_name Paul Michaels

The %_topdir variable specifies where the package will be built. The steps are to unpack the source RPM,
then cd into the SPECS directory and issue a build command. The unpack command is

rpm -ihv bsu-3.0.3-1.src.rpm

The directory tree will look something like this:

redhat/
|-- BUILD
|-- RPMS
| |-- i386
| |-- noarch
| ‘-- x86_64
|
|-- SOURCES
| ‘-- bsu-3.0.3.tar.gz
|-- SPECS
| ‘-- bsu-3.0.3-1.spec
‘-- SRPMS

Then change into the SPECS directory and edit the BSU spec file:

cd redhat/SPECS
vi bsu-3.0.3-1.spec

2 OBTAINING AND INSTALLING BSU 30

You can edit the bsu-3.0.3-1.spec file which starts like this:

%define name bsu
%define version 3.0.3
%define release 1

And change the release to match your initials, say “JMS":

%define name bsu
%define version 3.0.3
%define release 1JMS

Save the edited spec file and then build the binary rpm:

rpmbuild -ba bsu-3.0.3-1.spec

If all goes well, it will build and locate a binary rpm in the redhat\RPMS directory tree. Install the binary rpm
as described in section 2.6.2.

2.8 Security
Integrity of the packages can be verified with my public GPG key and finger print posted on the security web page:

http://173.255.241.228/security.php

You will also find md5sum files for each package or TAR archive.

2.8.1 GPG Signature, RPM Packages

To verify the integrity of an RPM package, do the following:

1. Download my public GPG key from my security web page, save it in a file named “pmkey.asc“

2. Import my public key into RPM

3. Execute the rpm command with the -K option on the downloaded *.rpm file.

EXAMPLE:

sudo rpm --import pmkey.asc
rpm -K bsu-3.0.3-1.x86_64.rpm

The output from the ”rpm -K ” command should verify both md5 sum and gpg in one line:

bsu-3.0.3-1.x86_64.rpm: sha1 md5 OK

2.8.1.1 GPG Signature, DEB Packages To verify the integrity of a *.deb package, do the following:

1. Download my public GPG key from my security web page, save it in a file named “pmkey.asc“

2. Import my public key into your gpg keyring

3. Execute the gpg command with the --verify option on the *.dsc or *.changes file

EXAMPLE: First we import the key. We can list our keys to check and see if it is there (for those who may be paranoid).
Below are the commands and the output from the gpg program.

Command:

gpg --import pmkey.asc

Output:
gpg: key 4812C85C: public key "Paul Michaels (January 2002)
<pm@cgiss.boisestate.edu>" imported
gpg: Total number processed: 1
gpg: imported: 1

Command:

http://173.255.241.228/security.php

2 OBTAINING AND INSTALLING BSU 31

gpg --list-keys

Output:

/home/pm/.gnupg/pubring.gpg

pub 1024D/4812C85C 2002-02-01
uid Paul Michaels (January 2002) <pm@cgiss.boisestate.edu>
sub 1024g/1430F4BF 2002-02-01

Next, we verify the signature embedded in the *.dsc or *.changes file.

Command:

gpg --verify bsu_3.0.3-1.dsc

Output:

gpg: Signature made Tue 13 Jun 2017 03:05:50 PM MDT using DSA key ID 4812C85C
gpg: Good signature from "Paul Michaels (January 2002)
<pm@cgiss.boisestate.edu>"

The warning results if you have not certified the signature with a level of trust. You can edit the key and change
the trust, as well as sign it (assuming you have your own public and private key). But this is not necessary to check
*.changes or *.dsc file (assuming you are confident of my key). If you obtained my key from some source other
than my web page, you may wish to compare it with the listing below:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.6 (GNU/Linux)

mQGiBDxZ9GIRBADJ/p9510p5ubYWlhGZgMNJUEcP2rkMoA/jtxFqqaWERjvMKwW4
kbWytJ2VLlIhiFI0vUMtViHpppFz6TfDR+1qvIzBqxobieIuPxotCa1e+KDWpaCI
Rb2+4ny2TlbZ3JBsK9rzMZkIVsUa7aCFbHmtLpBRwf2T97AEm3+lSQFBEwCgiWqC
wc2tKBGeZ6rdmGWkbmUzdN8EAMnoXaW5lo+WhbitR40qQ5YwE0GwXMcD+/QhMjCv
353YPbnPzkhFokQ6dVkk3rTQBV5jg0p0YsjNVaWwQo7oNXLOLLhC2d+/mLPGjPH+
afgKGFmyXkxUuLHmht0JZsuiLfr8oOEBQyHwQC+y1Ccd94nEefTvQE8I8Sqy0kP/
01ezA/9B/+Xy+L4mJvGGJ/cOOV4yzzR8BJ+koYhGVvNEq2I5jy67KhBpSPWxRPb5
dWu31WCnkzk6i9NUAx3QecvXLTR6AZMvw1TL8kGmCsG7vWWNB1Mg2P62AMARxbOl
fPY5Y9tzDFXaNan6axTGMKOto/5RDfp5X9n08bfiUiFK0iVH6bQ2UGF1bCBNaWNo
YWVscyAoSmFudWFyeSAyMDAyKSA8cG1AY2dpc3MuYm9pc2VzdGF0ZS5lZHU+iFcE
ExECABcFAjxZ9GIFCwcKAwQDFQMCAxYCAQIXgAAKCRDdrrznSBLIXCYzAJ9XDNs+
/Ue7F/hFQdsM8Xb3K1EUsACeIbhzpowmmOAWkcW/H77fUg4O6G+5AQ0EPFn0dRAE
AIBVO6W+vPZimewQeBIAaou+81RMGmBcMQ3fUjLdXUQubjOM4LYjS4WP+AtzIvuj
2GXMBkh0eOAiw0Icn9UD5Qv1ogBrRBmSGmP4XLtin6PgGdG9Ak6PQtb2ZKj5kGq3
8fG/OOtFSYHJuD8MPenL3mMQwSMtoFgMqpU3b/1ONVdDAAMFA/0WjVrD0vMw2O1R
4owGbsu9VdS5V3BDwssgVy1V7GZEB1iCJqKPf87wNYaZWQWuCx6SmVQe+XrP67MC
Zbm8Pk8bFFaNa3aOXHfqB+kzXofiKfCNVdqy7jAyZrhN753pZlJYMvq/EnNa5qMm
PrNak+/8XZMA1I76l9//ybQMwuK6gYhGBBgRAgAGBQI8WfR1AAoJEN2uvOdIEshc
sToAni1CjyZvwbsYb0uVSkZuP4dEUAOkAJ9FIBzX2e/16FVW222yNKOl0shLRw==
=zS6T
-----END PGP PUBLIC KEY BLOCK-----

2.8.1.2 Detatched GPG Signatures Files that can not be internally signed have a detached GPG signature.
For example, the TAR archive bsu-3.0.3.tar.gz has been signed with my default key using the command:

gpg --sign --armor -b bsu-3.0.3.tar.gz

This produces a file bsu-3.0.3.tar.gz.asc which is the detached signature. This signature may be verified
with my public key. If the *.asc and *.tar.gz file are in the same directory, one would issue the following command:

gpg --verify bsu-3.0.3.tar.gz.asc

3 OTHER SOFTWARE 32

A more complete command would also include the file being checked as an additional argument:

gpg --verify bsu-3.0.3.tar.gz.asc bsu-3.0.3.tar.gz

3 Other Software

3.1 PLPLOT
At the time of this writing, the home web page for PLPLOT is http://plplot.sourceforge.net/. Most linux distri-
butions have PLPLOT binary packages available in their respective repositories. The PLPLOT library is used by
BSU to generate the following types of graphics:

Program Graphics Produced Comment
X-window (xwin/wxt)
Postscript

bplt.c xfig plot seismic waveform data
jpeg
PDF

bvsp.f Postscript down-hole vertical seismic profile velocity inversion
bhod.F90 Postscript hodogram analysis of down-hole tool orientation
bvas.F90 Postscript velocity dispersion of Down-hole data
bamp.F90 Postscript amplitude decay of Down-hole data
bvax.F90 Postscript velocity dispersion of Surface Wave data
bamx.F90 Postscript amplitude decay of Surface Wave data
caplot.F90 Postscript composite plot of bvas and bamp results
bfit.c Postscript down-hole vertical seismic profile vertical time analysis
bgaz.c Postscript broad-band analysis of amplitude decay with vertical depth
bgar.c Postscript broad-band analysis of amplitude decay with horizontal offset
bazi.F90 Postscript horizontal component hodogram
bzrt.F90 Postscript vertical component and either R or T horizontal hodogram
mseed2seg.c wxt, x11, gnuplot converts MiniSeed to BSEGY extraction
sac2seg.c wxt, x11, gnuplot converts SAC (see www.iris.edu) to BSEGY extraction

3.2 BLAS and LAPACK
BLAS and LAPACK are available from http://www.netlib.org/lapack/. These libraries are used by BSU when
linear algebra functionality is needed.

Program Comments
bhod.F90 hodogram analysis of down-hole tool orientation
bvsp.f down-hole vertical seismic profile velocity inversion

3.3 GSL and CBLAS
GSL and CBLAS are available from http://www.gnu.org/software/gsl/. CBLAS is the C-language version of BLAS
(see above). GSL is used in the following case:

Program Comments
lamb.c solution to Lamb’s problem (waves generated from a vertical impact on 1/2 space)

3.4 CMLIB
The CMLIB is quite large and not essential to install, since the needed code is included in the Fortran77 sublib4.a
(rand.f and runif.f). However, you may wish to explore what is available from CMLIB, so the site to visit is
http://gams.nist.gov/serve.cgi/PackageModules/CMLIB.

http://plplot.sourceforge.net/
http://www.netlib.org/lapack/
http://www.gnu.org/software/gsl/
http://gams.nist.gov/serve.cgi/PackageModules/CMLIB

3 OTHER SOFTWARE 33

3.5 LIBMSEED
Program mseed2seg.c requires that libmseed be installed. This is an IRIS program. This IRIS library can be found
at: https://github.com/iris-edu/dataselect/releases. The source code compiles well and can be installed in a location
like the /usr/local/ directory tree.

The library may also be in your package manager. This is true for Debian linux and may be true for other
Linux distributions. IMPORTANT: Debian package libmseed-dev ONLY has dynamic library. If configure is run
for static build, then you need to compile a static version of libmseed.a and install it in /usr/local/lib first.

If running in Microsoft Windows, bsu-3.0.3 had a copy of libmseed source included in the cross-compilation
for Mingw and included in the Microsoft *.zip file of static binary build.

3.6 Octave
Included with BSU is a directory with some procedures written in the Octave language. For example, the procedure,
bsegin.m, can read the binary BSEGY data format. If you have used Matlab, you will find Octave easy to use (the
syntax is very similar). Also included in BSU are other scripts to perform seismic refraction interpretation and
inversion of down-hole transmission seismograms for soil stiffness and damping. Octave is particularly useful for
plotting, and some interactive GUI driven plotting procedures may prove useful to the user. You may install Octave
with your package manager or download Octave from the web site, http://www.gnu.org/software/octave.

3.7 Seismic Unix
While BSU is completely independent of Seismic Unix (SU), it is highly compatible with it, but only if SU
has been compiled without XDR. The XDR option in SU originated around 1997 and is essentially a big endian
byte order with IEEE encoding of floats. See section 6.6.4 for more on this topic. I use both, often plotting
BSU results with SU software (see the bash scripts xPlot-su and psPlot-su in the BSU source archive scripts
directory). The structure of the binary data formats are the same (240 byte trace header followed by 4 byte floating
point data). The number of samples and sample interval headers are identical. The header formats do differ in
some important ways (BSEGY has definitions for source and receiver polarizations). In short, SU has a program,
segyclean, which permits SU to read BSU files, should a difficulty be encountered. To download SU, visit GITHUB
https://github.com/JohnWStockwellJr/SeisUnix.

3.8 Xfig
Xfig is a CAD program that permits you to draft figures (like Autocad or Microstation). The Octave procedures
included in BSU often provide the option to save plots in Xfig format. In particular, the plotting sections have
scaling options for both Xfig and Postscript. It is possible to control the axes lengths in desired distance units on a
printed page. It is also worth noting that Xfig is a valid device format for the PLPLOT library. That is, all you need
to do is change the device definition in a BSU code that uses Postscript, and it will output a file in Xfig format.
Then you can draft on the figure. If you don’t already have Xfig (it comes with most Linux distributions), then
download it from, https://sourceforge.net/projects/mcj.

3.9 Trouble Shooting
There are basically two ways to install software in Linux. One can either install packages, or unpack TAR archives
in the /usr/local directory tree followed by a compile of the source code. Mixing these two methods can
sometimes lead to problems. Packaging data bases are often unaware of programs compiled in the /usr/local
tree.

3.9.1 Example: PLPLOT tar, BSU rpm

At the time of this writing, the PLPLOT libraries are not well represented in the RPM packaging effort (APT pack-
aging is quite good by contrast). Installing PLPLOT on Redhat Enterprise Linux is a good example. Developing
a SPEC file for PLPLOT with all the various sub-packages is a big job, and so unpacking in the /usr/local tree
is quite attractive. I did this with the plplot-5.10.0.tar.gz TAR archive. PLPLOT uses cmake rather than configure.

https://www.iris.edu
https://github.com/iris-edu/dataselect/releases
http://www.gnu.org/software/octave
https://github.com/JohnWStockwellJr/SeisUnix
https://sourceforge.net/projects/mcj

3 OTHER SOFTWARE 34

To build plplot libraries, untar plplot-5.10.0.tar.gz in the /usr/local/src directory. The following is the sequence of
commands:

cd /usr/local/src/plplot-5.10.0
mkdir build_dir
export CC="gcc -O2"
export CXX="g++ -O2"
export FC="gfortran -O2"
cd build_dir
cmake -DCMAKE_INSTALL_PREFIX=/usr/lib64 ../ >& cmake.out

make >& make.out
sudo make install >& make_install.out

The X11 driver requires that the libX11-devel RPM package be installed. Failing to install needed *-devel.rpm
packages is likely to result in a driver not being built.

In this example, the installed libraries are located in /usr/lib64. If you put the libraries somewhere else like
/usr/local/lib then they may not be found when needed. For example, if /usr/local/lib is not already in
/etc/ld.so.conf, you should add it, and then execute

sudo ldconfig -v

to make the system aware of the new libraries. If you intend to install BSU as an RPM, it is likely that the next
problem will be that RPM will not be aware of these libraries, and can block the install of the package. That is,
even though these libraries have been installed under /usr/local/lib and the system is aware of it, the RPM
data base is not aware of it, and so blocks the install. The solution is to use the --nodeps option:

rpm -ihv bsu-3.0.3+plplot-1.x86_64.rpm --nodeps

This overrides the RPM data base, and permits the install. At object time, the programs requiring the PLPLOT
libraries will be able to find them, and all will be well. Of course, these types of problems are avoided when
building BSU from a source tarball, or from installing Plplot libraries in standard locations.

4 PROGRAMMING IN BSU 35

4 Programming in BSU
BSU is composed of Fortran77, Fortran90, and C-language codes. I continue to write in both Fortran and C-
language, taking advantage of pre-existing libraries and software. The BSU paradigm has been kept very simple.
To add a new program is quite easy. Here are some guidelines.

4.1 Programming Guidelines
1. Decide on which language to program in. If you only know one language (and it is either Fortran or C)

then this will be an easy decision. If you are bilingual, consider the subroutine libraries.

2. Examine the BSU and some 3rd Party subroutine libraries

• bsu-3.0.3/src/sublibC4 – These are the C-language functions
• bsu-3.0.3/src/sublibF4 – These are the Fortran subroutines
• bsu-3.0.3/src/sublibC – These are C-functions which can be called by Fortran
• bsu-3.0.3/src/libIBM – The xdrfloa.c function is in libibm.a and is used to produce IBM float-

ing point needed for the SEGY exchange format (see program bcnv.c).
• bsu-3.0.3/src/subLAPACK – This produces a static library that consists of a subset of the Lapack

functions needed for a static build of BSU.

Consult these libraries to see which pre-existing subroutines might serve your needs. Your choice of pro-
gramming language may depend on what is available in each language. Of course, you can always add to
the subroutine libraries, so this is not the only issue.

3. Examine Other 3rd party libraries that you may need. PLPLOT can be called from both C and Fortran.
For linear algebra, the LAPACK libraries are available in both Fortran and C. Further, the GSL library has
some duplication of LAPACK in it (strictly C only). For other scientific functions, the GSL libraries are in
C, and the CMLIB material is Fortran.

4. Copy a master example to a new file name. The programs are:
bsu-3.0.3/src/Fort/bsegy/bmst.f
bsu-3.0.3/src/C/bsegy/cmst.c
These programs are simple examples which you can copy to a new file, and then edit. What they do is
read traces from a BSEGY data set. As each trace is read, it is rectified with an absolute value function.
The rectified trace is output. What you will want to do is replace the absolute value part with your own
calculations. The source code for main programs should be kept located in the appropriate bsegy directory.

5. Edit the new program. You will need to change the process name character string (4 characters), the input
parameter function/subroutine, and the output listing function/subroutine to meet your needs (see section 4.2
below). You will replace the computation section with your own code.

6. Edit Makefile.am. You will want to add your program to the file.
a). Add your process to the list of executables at the top (bin_PROGRAMS=).
b). Add a filename_SOURCES=filename.c or filename_SOURCES=filename.f
c). If you are adding to the one of the subroutine libraries, then all you need to do to the Makefile.am in the
subroutine directory is to add the name of the new source file to the list at the top of Makefile.am.
(ie. libsubF4_la_SOURCES= or libsubC4_la_SOURCES=).

7. Re-configure the build tree Change back to the bsu-3.0.3 top directory and re-run configure.

8. Compile your new program Type:

make

9. Install your new program. Type:

make install
(this will install everything, so you might only want to explicitly install the executable manually).

4 PROGRAMMING IN BSU 36

10. Write a man page for your new program. Start with an existing man page, and modify it to meet your
specific needs. Use man1 for main programs, man3 for subroutines. Install in the appropriate directory:
bsu-3.0.3

|-- man
| |-- man1
| |-- man3
| |-- man5
| ‘-- man7

4.2 Conventions and Process Flow Description
4.2.1 File Naming Conventions

BSU main programs should be named with a 4 character process name, starting with the letter “b”. This permits
about 17,576 names. An example would be bfoo.f or bfoo.c in Fortran or C. The reason for this is that an output
file name is constructed from the input file name (all input file names need to be at least 4 characters, and the first
4 characters are captured to form part of the output file name). In retrospect, the Seismic Unix convention is far
superior (using stdin and stdout). But, as you might have guessed, I went through a MSDOS phase (file names
restricted to xxxxxxxx.yyy format), and this is an example of the inertia that all ideas have (both good and bad).
It isn’t absolutely necessary to start a program name with “b”, and the BSU package includes even more deviant
examples. This was how I started, and future versions of BSU may abandon this convention.

The file naming convention is to form the output file name as “bfoobbar.seg”, where bfoo is the current process
running, and bbar is the first 4 characters of the input file name. In a limited way, the file name becomes a
processing history (of rather short memory span). Thus if process bfoo were to read a file babsw001.seg, the output
file would be named bfoobabs.seg. Another example would be if bfoo were to read a file xyzfileseven.seg, the
output file name would be bfooxyzf.seg. The primary advantage of this scheme is that it generates predictable file
names that can be counted on in writing bash scripts that run a string of processes. The disadvantages are too
numerous to list. You will probably note that I have deviated from this convention on several occasions. See one
of those programs for an example if you need to deviate from the convention.

4.2.2 Input Parameter Conventions

All input parameters may be entered on the command line, but their location is restricted to a predefined order. To
quickly ascertain the order, use the “-h” option. For example, if you type

bmed -h

Then the following output will be printed to the screen:

|---------------------------------|
| Copyright (C) 2017 P. Michaels |
| All rights reserved |
see GNU General Public License

|--|
| Basic Seismic Utilities FORTRAN |
ONLINE HELP:
bmed: Median mix of seismic traces
across the trace direction.
--

bmed infile mix

infile =input file name
mix =mix width <21

4 PROGRAMMING IN BSU 37

This gives one a short description of the process, and the command line arguments (in this case, infile and
mix). You may then run the process providing any number of command line arguments. The user will be prompted
for any arguments not included on the command line. The input of parameters is done by a call to subroutine
GETPRM(. . .) in Fortran, and by a function getparm(. . .) in C.

The other way to learn about the use of any program or subroutine/function of sublibF4 or sublibC4 is to use
the man page. For example, you could type:

man bmed

for a more complete description of the program and its input parameters.

4.2.3 Process Flow, Fortran Codes

The following is a description of the process flow for bmst.f, and any codes based on this master.

1. The application prefix (4 characters) is written into character variable aplc. You will want to edit this
according to your new process name.

2. Subroutine GETPRM:
call GETPRM(nargsx,infil,parm1, . . .). This subroutine is located inline with every main pro-
gram. You only need to modify the arguments starting with “parm”. This is your interactive/command line
input parameter subroutine.

3. Subroutine CHKTRC:
call CHKTRC(iunit1,icall1,npts,s1,fsamin,infil,bar,invbar,ibar,ntrace,ndim) checks the
input file and outputs number of samples, sample interval, number of traces, and some additional parameters
needed for the execution progress bar. Type:

man chktrc

for more on this subroutine.

4. Subroutine LSTPRM:
call LSTPRM(io11,ntrace,aplc,outlst,outfil, parm1, . . .) This subroutine provides an echo
check of the input parameters by writing to a listing file. Examining the listing file is sometimes useful when
you wish to see what you have previously done. The listing file name is the same as the output data file
name, but with a different suffix. Thus, if the ouput data file were named bfoobbar.seg, the listing file name
would be, bfoobbar.lst.

5. Then there is the trace loop. The do loop runs over the number of traces found in the chktrc() call. The
sequence in bmst.f is:

c...data loop=======================================....
do 100 jrec=1,ntrace

c
c...input a trace

call BSEGIN(iunit1,ndim,
+icall1,npts,s1,fsamin,infil,jrec,iexit)

c
ntr = ntr + 1

. . . . [DO SOME COMPUTATIONS ON THE SIGNAL S1]
c...output trace

iunit2=2
call BSEGOUT(iunit2,

+icall2,npts,s2,fsamin,outfil,jrec)
c...display progress....

call pltbar(bar,invbar,ibar,jrec,ntrace)
c...END LOOP==....

100 continue

4 PROGRAMMING IN BSU 38

where BSEGIN reads a trace, BSEGOUT writes a trace, and PLTBAR writes a progress bar to the screen in
real time. You would insert your own code at the “do some computations” location in the trace loop. The
secret to supressing a carriage return and line feed for the progress bar is the non standard “$” format for
Linux. In other operating systems, it may be different, try “\” if you plan on porting these codes to another
OS and “$” doesn’t work. This is a simple example, and more complicated flows with multiple loops are
possible. The other programs in the BSU package provide examples.

4.2.4 Process Flow, C-Language Codes

The following is a description of the process flow for cmst.c, and any codes based on this master. This is the C
version of bmst.f, and was named differently to allow both executables to be located in the same directory.

1. The application prefix (4 characters) is written into character variable pid. You will want to edit this
according to your new process name.

2. Function “getparm”
getparm(argc,argv,&iparm1. . .); This function is located inline with every main program. You
only need to modify the arguments starting with “iparm”. This is your interactive/command line input
parameter function.

3. Function “outlst”
outlst(iparm1,fparm1,infile,pid,ofile,lstfile,h3); This function (located inline with main
program file) provides an echo check of the input parameters by writing to a listing file. Examining the
listing file is sometimes useful when you wish to see what you have previously done. The listing file name
is the same as the output data file name, but with a different suffix. Thus, if the ouput data file were named
bfoobbar.seg, the listing file name would be, bfoobbar.lst.

4. Function “in_chk“
in_chk(&ntraces,&npts,&fsamin,hd,h1); Checks the input file and outputs number of samples,
sample interval, number of traces. Type:

man in_chk

for more on this subroutine.

5. Function ”bargrid“
bargrid(ntraces,&barr,&ibar,&invbar); Computes the parameters for the real time progress bar
drawn by exbar() to the screen.

6. Then there is the trace loop. The for loop runs over the number of traces found in the in_chk() call. The
sequence in bmst.c is:

for (jrec=0;jrec<ntraces;jrec++) //...trace loop
{

if(c_bsegin(jrec,s1,npts,&hd,h1)!=0) //...read a trace
{
fprintf(stderr,"ABORT--c_bsegin");
goto quit_it;

}
. [DO SOME COMPUTATIONS ON SIGNAL S1]

if(c_bsegout(jrec,s2,npts,&hd,h2)!=0) //...output a trace
{
fprintf(stderr,"ABORT--c_bsegout");
goto quit_it;

}
exbar(ntraces,bar,ibar,invbar,jrec+1); //...display progress bar

} // end trace loop-----------------------------

5 BSU DOCUMENTATION 39

where c_bsegin reads a trace and c_bsegout writes a trace, and exbar writes the progress bar to the screen in
real time. Again, you would insert your own code at the “do some computations” location in the trace loop. This
is a simple example, and more complicated flows with multiple loops are possible. The other programs in the BSU
package provide examples.

4.2.5 Locations of Functions and Subroutines

For the Fortran codes, the subroutines GETPRM() and LSTPRM() are kept inline with the main program file. The
reason is that these subroutines will change with every new program (since each new program will have different
input parameters). The same is true for C-language functions, getparm() and outlst(). For other subroutines
and functions, they should be located in the subroutine library, especially if they are likely to be reused by other
programs. Exceptions would be functions unique to a particular program, or which might have a library equivalent,
but for some reason, like extra I/O needs, not be appropriate in a general library. For Fortran codes, the library is
located in bsu-3.0.3/src/sublibC4, and for C-language programs, the library is located in bsu-3.0.3/src/sublibF4.

5 BSU Documentation
BSU has several forms of documentation. These are:

• The help option on the command line.

• The program bhelp

• Man Pages (including whatis or mandb and apropos)

• Running BSU (RunningBSU-3.0.3.tgz)

• This User’s Guide (BSU-guide3-3.tgz)

5.1 Command Line Help
Each executable main program tests the command line for arguments. If no arguments are found on the command
line, then the program will prompt for input as described above. One can see a complete list of command line
arguments by invoking the command line help option. The syntax for a command line help is:

bmed -h

5.2 The bhelp Program
While the command line help is useful when you know what program to run, there will be times when you want
to briefly scan a list of available programs and functions. To browse this list, run bhelp and pipe it through the less
program:

bhelp | less

For those not familiar with less, you exit the less program by pressing the letter “q” on the keyboard while the
X-term window has focus. The programming language is indicated by the suffix of the file name. Program bhelp
lists the following:

• main programs

• C-functions (in bsu-3.0.3/src/sublibC4)

• Fortran subroutines (in bsu-3.0.3/src/sublibF4)

• Octave procedures (in bsu-3.0.3/Octave)

See Appendix A for the bhelp listing.

5 BSU DOCUMENTATION 40

5.3 BSU Man Pages
The manual pages are viewed by using the man command. The main programs, subroutines, and functions pack-
aged with BSU all have man pages. The location of the man page files will depend on your choice of the option,
--prefix= set during the compilation process. The standard location in Debian and Redhat packages would be
--prefix=/usr. However, it may be different. For example, you may have chosen --prefix=/usr/local. If
that were the case, man page files will be located under the directory /usr/local/man. Whatever your prefix is,
the man directory under that prefix should be in your man search path. If it isn’t, define and export the MANPATH
variable. For example, if you use bash and want to set MANPATH for all users, you might wish to edit the file,
/etc/profile, and add the line:

export MANPATH=$MANPATH:/usr/local/man

This will add the above directory to any existing MANPATH. Options for setting the man search path can vary
among the Linux distributions. For example, on Ubuntu, you may wish to edit the file /etc/manpath.config.
Examine your /etc directory for a file with “man” and some variation of “conf” or “config”. To view a man page,
type man followed by the program name (bmed in example below):

EXAMPLE

man bmed

You will be able to see the man page in an X-term window. To generate a Postscript version of a man page, type:

man -T bmed >bmed.ps

Then you can print or view the file bmed.ps with a ghostscript program (gv, evince, kpdf, etc . . .).
The other feature of man pages is the whatis and apropos data base. If you know the full name of the man page

you wish to view, then typing

whatis bmed

will give you a one line description of the man page contents.

bmed (1) - BSU program median mixes seismic data across the trace direction

If you are not sure of the entire spelling, type

apropos bme

to get a list of programs that have that character string in the whatis database. Not all programs listed will be
relevant to your inquiry.

bmed (1) - BSU program median mixes seismic data across the trace direction
obmenu (1) - a menu editor for openbox

5.4 BSU User’s Guide and Running BSU
That is this document, bsu-user-guide3-2.pdf and Running_BSU-3.0.3.pdf. They can be found in directory
/usr/share/doc/bsu if you have done a standard package install (*.rpm or *.deb). Alternatively, it might be in
/usr/local/share/doc/bsu if you have compiled from the source in the /usr/local/src directory. Also in the
doc directory are the GNU license documentation and a README file. Further information follows in section 6.

6 USING BSU 41

6 Using BSU
This section contains examples demonstrating how to use BSU. While each main program has a limited task to
perform, you may create more complicated processing flows using executable scripts. Examples of scripts may be
found in /usr/share/bsu/scripts/. When running scripts, you may wish to redirect the progress bar to the bit
bucket (/dev/null). Fore example, you could do this by:

bfoo argument1 argument2 >/dev/null

The above would be for a program bfoo with two command line arguments. You will need to specify all the
command line arguments if you do this. For examples of script flows, see the Merge scripts in Appendix B and
Appendix C.

This section includes:

• Data formats

• Converting data formats

• Setting Geometry

• Plotting programs

• Bash scripting with BSU and Seismic Unix (SU)

• Using Octave with bsegy data.

• Processing a down-hole (Vertical Seismic Profile) survey acquired with a source produces both SH- and
P-waves.

• Refraction delay time processing.

• Synthetic Seismograms, Lamb’s Problem

• Synthetic Seismograms: Near-Field, Far-Field Body Waves,
and Rayleigh Surface Waves

6.1 BSU Data Format, BSEGY
The definition of BSEGY format data is contained in the include files packaged with the source code. See directory
bsu-3.0.3/src/Fort/include/ for the fortran programs, bsu-3.0.3/src/C/include/ for the C-language
programs. The format is derived from the SEGY data exchange format published by the Society of Exploration
Geophysicists (SEG) [2]. As is the case in Seismic Unix (SU), the tape reel header is dropped. Each signal begins
with a 240 byte trace header, followed by floating point data. The trace header specifies locations of the source
and receiver, number of samples in the signal, sample interval, etc. The BSEGY format differs from the SU format
in a key area. The SU format is well designed for reflection data, typically vertical component receivers. The
BSEGY format is designed with header elements which record the source and receiver polarizations, permitting a
full description of the inclination and azimuth of the geophone element as well as an equivalent force description
of the source effort.

6.1.1 Data Format Conversion

Engineering seismic data come in a variety of data formats, as recorded on seismographs. Examples include
BISON and SEG-2. Further, there are exchange formats, and other formats for published earthquake data. The
BSU package contains some software to convert data from one format to another. Programs bis2seg and egg2seg
have only one command line argument, the name of the input file which should be at least 4 characters long.

• BISON: Program bis2seg converts BISON format data to BSEGY format.

• SEG-2: Program egg2seg converts EGG Geometrics SEG-2 data to BSEGY format.

6 USING BSU 42

• SEGY: Program bcnv converts either way between BSU’s BSEGY and SEG’s SEGY formats. Since BSU
data names originated with the 8.3 format, SEGY data generated from BSU will have the suffix sgy rather
than segy. You can always rename the file after it is generated. The online help (bcnv -h) is:

bcnv infile endian compliance idirec idfc iunits hedfil

infile = input file name
endian 0= Little Endian host (Linux PC)

1= Big Endian host (IBM Mainframe)
compliance 1= SEGY Compliant (EBCDIC, IBM Float, BigEndian)

0= (ASCII Reel Header, Float and endian of host)
idirec 0= BSEGY ==>SEG-Y (new *.sgy)

1= SEG-Y ==>BSEGY (new *.seg)
idfc 1= floating point 4 byte output

2= long integer 4 byte output
3= short integer 2 byte output
(uses reel header if SEG-Y input data)

iunits 1= meters
2= feet
(uses reel header if SEG-Y input data)

NOTE:
hedfil only input if idirec=0 BSEGY --> SEG-Y
(hedfil contains 3200 bytes, 40 records, 80char each
If hedfil=’none’, then blank lines after C used

6.1.2 SEGY Exchange Format

Despite its age, the SEGY data exchange format remains popular. Originally designed for 1/2 inch tape, it has
evolved into a disk format as well. It consists of the following:

• Text Reel Header 3200 byte EBCDIC encoded 80 character records, beginning with the letter “C”. Origins
of EBCDIC (Expanded Binary Coded Decimal) are with the main frame computers, largely built by IBM at
the time SEGY was created. This is not ASCII encoding, typical of today’s personal computers and work
stations. As an aside, EBCDIC (29 key punch) evolved from an earlier, BCD (Binary Coded Decimal, 26
key punch), format. The use of IBM cards is extremely rare today.

• Binary Reel Header 400 byte binary integer encoded information about the entire reel of data. This is in
Big Endian byte order (most significant byte first).

Where the Seismic Unix (SU) program segywrite uses a pipe to the dd program for the conversions between
ASCII and EBCDIC, the BSU program bcnv.c uses library functions found in bsu-3.0.3/src/libIBM to do the
conversions. The requisite functions were downloaded from IBM in the original EBCDIC, converted to ASCII and
then edited to make the small static library libibm.a.

The reel headers are then followed by (trace header, data) signals. These are encoded as follows for each signal:

• Trace Header 240 byte mixture of 2 byte and 4 byte integers as defined in 6.1 above. Big Endian byte order.

• Data Each trace has the same number of digital samples, stored in either 4 byte IBM floating point, 4 byte
integer, or 2 byte integer format. Only one format is used in a data set. The sample interval is always the
same for all the traces. NOTE: The IBM floating point format is different than the native format, IEEE floats,
found on today’s workstations and personal computers Both IBM and IEEE are 4 byte floats. This difference
goes beyond byte order.

6 USING BSU 43

Program bcnv is used to convert between SEGY (exchange format above) and BSEGY (used by the BSU
software). If you really have data on tape, recommend that you use Seismic Unix (SU) programs, segyread and
segywrite. The program, bcnv, has been updated. The current version of bcnv will create SEGY data that can be
read by SU program segyread. The reverse direction is also true. That is, SEGY data created by SU program
segywrite can be read by BSU program bcnv. This has been tested successfully on 4 byte floats.

6.1.3 IBM and IEEE Floats

The program bcnv uses an IBM C-language function contained in a published library, libascii.tar.Z, downloaded
from <http://www-03.ibm.com/systems/z/os/zos/features/unix/libascii.html>. The file, xdrfloa.c, was extracted
and used in BSU library libIBM. The downloaded library had to be translated from EBCDIC encoding using a Perl
script.

#!/usr/bin/perl -w
use Convert::EBCDIC;

$Id: Ebcdic2Ascii,v 1.1 2010-06-16 22:41:38 pm Exp $

$translator = new Convert::EBCDIC;
#$ebcdic_string = $translator->toebcdic($a);
$filename=$ARGV[0];
open (fp1,$filename) ||
die "error opening file \n";

$e=<fp1>;
close(fp1);

$ascii_string = $translator->toascii($e);

open (STDOUT,’| tr \’\205\’ \’\n\’ | tr \’\335\’ \’[\’ |tr \’\250\’ \’]\’ ’);

print $ascii_string;

The above Perl script requires a Convert-EBCDIC package found at:
<http://search.cpan.org/ cxl/Convert-EBCDIC-0.06/lib/Convert/EBCDIC.pm>.
Since there are a number of versions of EBCDIC, the translate pipe converts the left, “[”, and right, “]” charac-

ters to produce a correct ASCII translation.
The function, ConvertIEEEToFloat(src,dst), produces the IBM floating point needed for SEGY exchange

format, and is used by my C program bcnv.c. The function, ConvertFloatToIEEE(src,dst), is used to produce
IEEE from floating points read from a SEGY file. Because IBM main frames are big endian, and Linux PC’s are
little endian, some byte swapping became necessary.

6.1.3.1 IBM FLOAT The 4 byte float (8 bits per byte) is defined as:

byte1 byte2 byte3 byte4
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
|s|<=ex=>| |<==============fr==============>|

(7) (24)
sign|exponent | fraction |

value = (-1)^s * 16^(ex-64) * .fr

5E-79< value < 7E+75

 http://www-03.ibm.com/systems/z/os/zos/features/unix/libascii.html
 http://search.cpan.org/~cxl/Convert-EBCDIC-0.06/lib/Convert/EBCDIC.pm

6 USING BSU 44

6.1.3.2 IEEE FLOAT The 4 byte float (8 bits per byte) is defined as:

byte1 byte2 byte3 byte4
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
|s|<=ex=====>|<==============fr==============>|

(8) (23)
sign|exponent | fraction |

value = (-1)^s * 2^(ex-127) * 1.fr

1E-38< value < 3E+38

In converting between the two float formats, an underflow is set to zero, and an overflow is set to the maximum
value defined by the format.

6.2 Checking Binary Files with hexdump
Sooner or later, the question about what format a data file exists in will come up. One can use the hexdump
program with the “-C” option to view a binary file. For example, the following command

hexdump -C data.seg | head -n 20

produced the following listing. The 240 byte trace header is listed from byte 00000000 to byte 000000f0. The
first sample is at byte 000000f0, and the 4 byte float value is F7 EC 97 40. This is a IEEE float representation of
the first data sample with a value of 4.7476763725280761. The float is single precision representation.

00000000 00 00 00 00 00 00 00 00 e9 03 00 00 18 00 00 00 |................|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 |................|
00000020 00 00 01 00 11 00 00 00 e4 44 01 00 d7 4b 01 00 |.........D...K..|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000040 00 00 00 00 9c ff 9c ff 40 42 0f 00 ef 41 0f 00 |........@B...A..|
00000050 40 42 0f 00 34 42 0f 00 00 00 00 00 00 00 00 00 |@B..4B..........|
00000060 00 00 00 00 00 00 00 00 00 00 00 00 f6 ff 00 00 |................|
00000070 00 00 a0 0f fa 00 00 00 00 00 18 00 00 00 00 00 |................|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000090 00 00 00 00 00 00 e8 03 00 00 00 00 d3 07 81 00 |................|
000000a0 0d 00 20 00 37 00 00 00 00 00 00 00 00 00 00 00 |.. .7...........|
000000b0 00 00 00 00 00 00 00 00 00 00 00 00 b4 00 00 00 |................|
000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000d0 00 00 00 00 00 00 00 00 00 00 00 00 30 30 30 31 |............0001|
000000e0 30 30 30 31 00 00 00 00 41 31 30 30 00 00 00 00 |0001....A100....|
000000f0 f7 ec 97 40 a7 eb b1 40 05 8d f9 3e 4e d5 a9 c0 |...@...@...>N...|
00000100 8e 09 95 c0 ca e1 13 3e ea 7b 09 40 bc 42 0f 3f |.......>.{.@.B.?|
00000110 91 65 01 c0 6f 9d 95 c0 31 97 a0 c0 35 f3 0c c0 |.e..o...1...5...|
00000120 ad a3 0a bf 2e 3b b4 bf d8 80 98 bf 05 8d f9 be |.....;..........|
00000130 91 65 01 c0 b2 2e 4a c0 1a e4 d6 bf 91 65 01 3e |.e....J......e.>|

6.3 Preparing data for BSU processing
Before processing with BSU software, one must first convert the data to bsegy format. Later sections in this
document give examples on how to do that conversion. Often, there will be two steps. Conversion of the data
(using a program from the above list), along with a transfer of survey or “geometry” data to the headers. The
need for this second “setting geometry” step is the common practice of not transferring survey information into
the digital data. Either a format may not include options for this information, or it may be that so much was going
on in the field that the observer was stressed and was lucky to just get it all down on “observer’s logs”. These are
paper sheets with the information about shot and receiver location, sample interval, etc.

In section 6.7.5, an example is presented for down-hole BISON data. You can download this data set from the
same web site that you downloaded BSU. The Geologan data example illustrates both the conversion of the digital
signals and the transfer of geometry to the BSEGY data set.

6 USING BSU 45

6.4 Conversion Programs: BSEGY <–> [SEGY | ASCII | CVS | Bison | SEG2]
Section 6.1.1 above lists programs to convert between BSU’s BSEGY format and the instrument formats (Bison
and SEG-2). It also gives the program used to convert between the exchange format (SEGY) and the BSU format
(BSEGY). Recognizing that some users will only wish to work with ASCII or Comma Separated Variable (CSV,
spread sheet) values instead of remaining in the BSU family of programs, the following programs were composed.

• seg2txt This program converts from BSEGY to ASCII text.

• seg2csv This program converts from BSEGY to CSV (spread sheet compatible)

• ba2s – This program converts from ASCII text to BSEGY binary format.

6.4.1 seg2txt

This Fortran program would follow after first converting from either an instrument format (Bison | SEG-2) or from
the SEGY exchange format to the BSU format, BSEGY. The online help shown below describes how one can limit
the data either by time (tmin & tmax) or by trace number (fstrc & lstrc). The output file will be columns (traces)
and time sample (down the page). One can also output an optional first column with sample time. Microsoft users
often find the *.exe versions of these programs useful.

seg2txt infil tmin tmax fstrc lstrc timelist

infil =input file name
tmin =minimum time
tmax =maximum time
fstrc =first trace
lstrc =last trace
timelist = 0 do NOT add column of sample times

= 1 Do add first column of sample times

EXAMPLE:
seg2txt 1000.seg .05 .10 2 5 0

would generate text file with 5-2+1=4 columns
No additional time column added

6.4.2 seg2csv

This C-language program would follow after first converting from either an instrument format (Bison | SEG-2)
or from the SEGY exchange format to the BSU format, BSEGY. The online help shown below reveals that this
program does not limit the data the way program seg2txt above does. For example, if the input file is 48 traces,
2500 samples per trace, the output *.csv file will have 2500 rows and 49 columns (the extra column being sample
time, and is the first column). The advantage of this approach is that the user need not know how many channels
or samples are in the file, and the disadvantage is that a very big file could swamp the limits of a spread sheet
program.

seg2csv infile

infile = input file name (4char minimum)

From the Man page:
EXAMPLE:

seg2csv 0001.seg

Input file 0001.seg will be converted and output as file named
0001.csv

6 USING BSU 46

6.4.3 ba2s

This C-language program converts an ASCII text file to a binary BSEGY file. It converts in the opposite direction
of the above programs seg2txt and seg2csv. The online help shows how one can read either a row or column
order text file. Only minimal headers are generated. The user can employ the program bhed to edit the headers.

ba2s infile iorder ncol nrow dt

infile = input file name
iorder = 1 each row is a trace, columns are time axis (int)

= 0 each col is a trace, rows are time axis (int)
ncol = number of columns in matrix (int)
nrow = number of rows in matrix (int)
dt = sample interval in micro seconds (int)

From the Man page:
EXAMPLE:

ba2s 8800.txt 0 62 5000 1000

File 8800.txt is processed by ba2s. Rows are time axis, 62 columns
(ie. channels). The number of samples per trace is 5000. Sample
interval is 1000 microseconds.

The procedure to edit headers includes running program bhed twice. First to download the current headers into
a file. This file can be edited, and then the edited file uploaded back into the data. For reference, the bhed help is:

bhed infile header_file iupdn

infile =input file name
header_file =file with selected header info
iupdn =1 download headers to header_file

=0 upload headers to BSEGY data set

An example flow is as follows:

bhed 8800.seg 8800.hed 1
(edit file 8800.hed)
bhed 8800.seg 8800.hed 0
mv bhed8800.seg 8800.seg

Note that the file 8800.hed is created on the first bhed run. Use your favorite text editor to modify this. Then
use the modified 8800.hed in the second run. This produces a file bhed8800.seg which can be renamed using the
move (mv) command.

6.5 Setting Geometry
This is the most painful and most critical step in processing seismic data. The BSEGY format is derivative of
SEGY format, and consists of a 240 byte trace header (which includes the geometry; source and receiver locations,
elevations, sample interval, geophone polarity and orientation, etc.). The trace header is followed by the digital
data for that source-receiver pair.

It is often the case that the Bison, EGG Geometrics, or whatever recording instrument does not contain enough
information to complete the trace header. This is why paper observer’s logs are filled out. Here is where the
surveyor information is merged to complete the setting of trace headers. Header information like sample interval
or number of samples are usually OK and included in the trace header when tools like bis2seg, egg2seg, topcon,
topcon2, bhed, bnez, gensetg, setgeom, genref are run.

6 USING BSU 47

6.5.1 Setting Geometry SEG-2 Data: Example 1 [bnez-> gensetg-> egg2seg-> setgeom]

This example is for data recorded in SEG-2 format. If you wish to follow along, this sample is for a data set,
recorded on an EGG Geometrics seismograph. Those data and scripts below can be downloaded from the SEGY-
Data archive:

Go to https://173.255.241.228/BSU/
Check the BSU Campus check box and then submit button. The data are downloaded as archive ID-100.zip.
Unzip the archive and go to Example 1. We begin with the program bnez.

#!/bin/bash
Script gofirst
bnez 000001.nez 13 2 1 0 0 0 01 0 0 0 1
mv bnez.lst bnezshots.lst
bnez 000002.nez 30 1 14 0 0 0 01 0 1 0 1
mv bnez.lst bnezphones.lst
mv 000001.nez LAB001.nez
cat 000002.nez >>LAB001.nez
rm 000002.nez

The first command, bnez, automates the generation of source positions for an NEZ survey file (Northing=Y,
Easting=X, Elevation=Z). Here is the online help when you type bnez –h

bnez outfile n-points tag so yo xo zo ido dy dx dz did

outfile = output file name (ex. aaaa0001.nez

n-points = number of survey points to generate
tag = 1 tag=VP

= 2 tag=SP
so = first value of sequence number
yo = northing of first point
xo = easting of first point
zo = elevation of first point
ido = initial ID number
dy = spacing between points in north direction
dx = spacing between points in east direction
dz = spacing in elevation between points
did = interval in ID between points

The contents of the file, 000001.nez, contains 5 columns, [ID,Y,X,Z,Tag] and is as follows:

1 0.000000 0.000000 0.000000 SP001
2 0.000000 0.000000 0.000000 SP002
3 0.000000 0.000000 0.000000 SP003
4 0.000000 0.000000 0.000000 SP004
5 0.000000 0.000000 0.000000 SP005
6 0.000000 0.000000 0.000000 SP006
7 0.000000 0.000000 0.000000 SP007
8 0.000000 0.000000 0.000000 SP008
9 0.000000 0.000000 0.000000 SP009
10 0.000000 0.000000 0.000000 SP010
11 0.000000 0.000000 0.000000 SP011
12 0.000000 0.000000 0.000000 SP012
13 0.000000 0.000000 0.000000 SP013

One generates a second file for the geophone locations, 000002.nez, and then the two NEZ files are concate-
nated into a merged file LAB001.nez. Note the source did not move for all 13 shot record efforts.

.

6 USING BSU 48

The second bnez command produces file 000002.nez shown below:

14 0.000000 0.000000 0.000000 VP001
15 0.000000 1.000000 0.000000 VP002
16 0.000000 2.000000 0.000000 VP003
17 0.000000 3.000000 0.000000 VP004
18 0.000000 4.000000 0.000000 VP005
19 0.000000 5.000000 0.000000 VP006
20 0.000000 6.000000 0.000000 VP007
21 0.000000 7.000000 0.000000 VP008
22 0.000000 8.000000 0.000000 VP009
23 0.000000 9.000000 0.000000 VP010
24 0.000000 10.000000 0.000000 VP011
25 0.000000 11.000000 0.000000 VP012
26 0.000000 12.000000 0.000000 VP013
27 0.000000 13.000000 0.000000 VP014
28 0.000000 14.000000 0.000000 VP015
29 0.000000 15.000000 0.000000 VP016
30 0.000000 16.000000 0.000000 VP017
31 0.000000 17.000000 0.000000 VP018
32 0.000000 18.000000 0.000000 VP019
33 0.000000 19.000000 0.000000 VP020
34 0.000000 20.000000 0.000000 VP021
35 0.000000 21.000000 0.000000 VP022
36 0.000000 22.000000 0.000000 VP023
37 0.000000 23.000000 0.000000 VP024
38 0.000000 24.000000 0.000000 VP025
39 0.000000 25.000000 0.000000 VP026
40 0.000000 26.000000 0.000000 VP027
41 0.000000 27.000000 0.000000 VP028
42 0.000000 28.000000 0.000000 VP029
43 0.000000 29.000000 0.000000 VP030

Once the merged NEZ file has been created, we can then run program gensetg. This is an interactive program,
and the following is a log of the execution captured from the terminal:

$ gensetg
|--|
| Copyright (C) 2009 P. Michaels |
| All rights reserved |
See GNU General Public License
gset: TIME: 15:44:00 DATE: 29/Dec/2016
SHOTS: ---------------------------
Enter first shot file NAME number
1001
Enter last shot file NAME number
1013
Enter first SP label NUMBER
01
Enter increment for SP label NUMBER
1
PHONES: ---------------------------
Enter number of BLOCKS to define channels
1

6 USING BSU 49

BLOCK Number------- 1
Channels (1) through (?)
Enter last channel for this block
30
Enter first label VP NUMBER for this block
01
Enter label VP increment for this block
1

The result of gensetg is the creation of 2 files, shots.txt, which relates the data sets to the shot locations, and
phones.txt, which relates the channel to VP location in the NEZ file.

File shots.txt is as follows:

1001.seg SP001
1002.seg SP002
1003.seg SP003
1004.seg SP004
1005.seg SP005
1006.seg SP006
1007.seg SP007
1008.seg SP008
1009.seg SP009
1010.seg SP010
1011.seg SP011
1012.seg SP012
1013.seg SP013

File phones.txt is as follows:

01 VP001
02 VP002
03 VP003
04 VP004
05 VP005
06 VP006
07 VP007
08 VP008
09 VP009
10 VP010
11 VP011
12 VP012
13 VP013
14 VP014
15 VP015
16 VP016
17 VP017
18 VP018
19 VP019
20 VP020
21 VP021
22 VP022
23 VP023
24 VP024
25 VP025
26 VP026
27 VP027
28 VP028
29 VP029
30 VP030

6 USING BSU 50

We conclude by transferring the geometry to the seismic traces. The following script is used in this case:

#!/bin/bash

if ! [-e LAB001.nez]
then
echo "LAB001.nez missing, run gofirst"
else
if ! [-e shots.txt]
then
echo "shots.txt missing, run gosecond (gensetg)"
else
if ! [-e phones.txt]
then
echo "phones.txt missing, run gosecond (gensetg)"
else

convert SEG2 files to BSEGY (*.seg), headers not final
FILES=‘ls -1 *.DAT |sort ‘
for f in $FILES; do
egg2seg $f;
done
rm *.lst

apply correct geometry to *.seg files created above
setgeom shots.txt phones.txt LAB001.nez

#rename files (like setg1001.seg to 1001.seg)
for f in $FILES; do
NAME=‘basename $f .DAT‘
mv setg${NAME}.seg ${NAME}.seg
done

fi
fi
fi

The after checking for needed files, the bash script loops through data files, 1001.DAT through 1013.DAT
converting these SEG-2 files recorded with the EGG Geometrics. The result is files 1001.seg through 1013.seg
are created, but do not yet have the correct geometry. Program, setgeom, runs and applies the correct geometry to
the BSEGY files, setg1001.seg through setg1013.seg. The last step in the script renames the files back to 1001.seg
through 1013.seg.

We can view the headers created using the bdump program. For example, the command, bdump 1001.seg 0
produces the following text file. Note that the above process corrects the locations of sources and receivers. The
program egg2seg, has inserted the trace length, filters, shot date and time. The assumption of shot and receiver
orientation (180 degrees from vertical) is a default setting and may need to be corrected. For that, program bhed
can be used.

6 USING BSU 51

|-------------------------------|
| PARTIAL SEGY HEADER DUMP |
| |
| 1001.seg |

Length = 2000 samples | Shot Elevation = 0.0
Sample Interval = 0.00025 sec. | Shot Depth = 0.0
Delay Time = 0 msec. | Up Hole Time = 0 msec
Low Cut Filter = 0 Hz. | Shot X-COORD = 0.00
High Cut Filter = 1000 Hz. | Shot Y-COORD = 0.00
Line ID: 001 | Shot Date (year.moday) = 2004.0406
Shot Orientation: | Shot Time (hr:min) = 14:16
Azimuth= 0 Deg. Vertical=180 Deg.| Charge Size (grams)= 0

TRACE|SHOT| STATION | OFFSET| RECEIVER |VERT|1STBRK|K-GAIN|AZI|VER|

#	REC.	SHOT REC		ELEV. X-COORD Y-COORD	FOLD	(SEC.)	(dB)		

1 | 1| 001 001| 0.00| 0.00 0.00 0.00| 2|0.0000| 24 | 0|180|
2 | 1| 001 002| 1.00| 0.00 1.00 0.00| 2|0.0000| 24 | 0|180|
3 | 1| 001 003| 2.00| 0.00 2.00 0.00| 2|0.0000| 24 | 0|180|
4 | 1| 001 004| 3.00| 0.00 3.00 0.00| 2|0.0000| 24 | 0|180|
5 | 1| 001 005| 4.00| 0.00 4.00 0.00| 2|0.0000| 24 | 0|180|
6 | 1| 001 006| 5.00| 0.00 5.00 0.00| 2|0.0000| 24 | 0|180|
7 | 1| 001 007| 6.00| 0.00 6.00 0.00| 2|0.0000| 24 | 0|180|
8 | 1| 001 008| 7.00| 0.00 7.00 0.00| 2|0.0000| 24 | 0|180|
9 | 1| 001 009| 8.00| 0.00 8.00 0.00| 2|0.0000| 24 | 0|180|

10 | 1| 001 010| 9.00| 0.00 9.00 0.00| 2|0.0000| 24 | 0|180|
11 | 1| 001 011| 10.00| 0.00 10.00 0.00| 2|0.0000| 24 | 0|180|
12 | 1| 001 012| 11.00| 0.00 11.00 0.00| 2|0.0000| 24 | 0|180|
13 | 1| 001 013| 12.00| 0.00 12.00 0.00| 2|0.0000| 24 | 0|180|
14 | 1| 001 014| 13.00| 0.00 13.00 0.00| 2|0.0000| 24 | 0|180|
15 | 1| 001 015| 14.00| 0.00 14.00 0.00| 2|0.0000| 24 | 0|180|
16 | 1| 001 016| 15.00| 0.00 15.00 0.00| 2|0.0000| 24 | 0|180|
17 | 1| 001 017| 16.00| 0.00 16.00 0.00| 2|0.0000| 24 | 0|180|
18 | 1| 001 018| 17.00| 0.00 17.00 0.00| 2|0.0000| 24 | 0|180|
19 | 1| 001 019| 18.00| 0.00 18.00 0.00| 2|0.0000| 24 | 0|180|
20 | 1| 001 020| 19.00| 0.00 19.00 0.00| 2|0.0000| 24 | 0|180|
21 | 1| 001 021| 20.00| 0.00 20.00 0.00| 2|0.0000| 24 | 0|180|
22 | 1| 001 022| 21.00| 0.00 21.00 0.00| 2|0.0000| 24 | 0|180|
23 | 1| 001 023| 22.00| 0.00 22.00 0.00| 2|0.0000| 24 | 0|180|
24 | 1| 001 024| 23.00| 0.00 23.00 0.00| 2|0.0000| 24 | 0|180|
25 | 1| 001 025| 24.00| 0.00 24.00 0.00| 2|0.0000| 24 | 0|180|
26 | 1| 001 026| 25.00| 0.00 25.00 0.00| 2|0.0000| 24 | 0|180|
27 | 1| 001 027| 26.00| 0.00 26.00 0.00| 2|0.0000| 24 | 0|180|
28 | 1| 001 028| 27.00| 0.00 27.00 0.00| 2|0.0000| 24 | 0|180|
29 | 1| 001 029| 28.00| 0.00 28.00 0.00| 2|0.0000| 24 | 0|180|
30 | 1| 001 030| 29.00| 0.00 29.00 0.00| 2|0.0000| 24 | 0|180|

6.5.2 Setting Geometry SEG-2 Data: Example 2 [bnez-> topcon2]

This is an alternative approach to illustrate the use of the topcon2 program. The first step is the same as in Example
1. Program bnez is run to generate the NEZ data set of merged shot and geophone coordinates. The other steps,
gensetg, ee2seg, and setgeom are replaced with calls to the topcon2 program. The downside is that there is no
interactive generator (gensetg). So this is good for small problems where one just edits a bash script to run.

6 USING BSU 52

#!/bin/bash
topcon2 LAB001.nez 1001.DAT 0001 0.0 1 30 001 030 1 0. 0 180 0 0
topcon2 LAB001.nez 1002.DAT 0001 0.0 2 30 001 030 2 0. 0 180 0 0
topcon2 LAB001.nez 1003.DAT 0001 0.0 3 30 001 030 3 0. 0 180 0 0
topcon2 LAB001.nez 1004.DAT 0001 0.0 4 30 001 030 4 0. 0 180 0 0
topcon2 LAB001.nez 1005.DAT 0001 0.0 5 30 001 030 5 0. 0 180 0 0
topcon2 LAB001.nez 1006.DAT 0001 0.0 6 30 001 030 6 0. 0 180 0 0
topcon2 LAB001.nez 1007.DAT 0001 0.0 7 30 001 030 7 0. 0 180 0 0
topcon2 LAB001.nez 1008.DAT 0001 0.0 8 30 001 030 8 0. 0 180 0 0
topcon2 LAB001.nez 1009.DAT 0001 0.0 9 30 001 030 9 0. 0 180 0 0
topcon2 LAB001.nez 1010.DAT 0001 0.0 10 30 001 030 10 0. 0 180 0 0
topcon2 LAB001.nez 1011.DAT 0001 0.0 11 30 001 030 11 0. 0 180 0 0
topcon2 LAB001.nez 1012.DAT 0001 0.0 12 30 001 030 12 0. 0 180 0 0
topcon2 LAB001.nez 1013.DAT 0001 0.0 13 30 001 030 13 0. 0 180 0 0

The topcon2 program converts an *.DAT (SEG-2) file to an *.seg (BSEGY) file, (what egg2seg does above).
However, it does this with the aid of an NEZ file which contains the [Y, X, Z] coordinates of shots and receivers.
In addition, the command line of topcon2 selects information from the NEZ file and permits insertion of shot and
geophone orientations. The online terminal help is as follows:

topcon2 topf seg2f lid shdp is nch vpl vpn ir esh isa isv ira ita

topf = topcon file name
seg2f = seg-2 file name
lid = line ID
shdp = shot depth
is = shot location number
nch = number of channels (nch<66)
vp1 = geophone station channel 1
vpn = geophone station channel n
ir = shot record number
esh = elevation adjustment to be added
isa = source polarization azimuth (deg.)
isv = source polarization vertical (deg.)
ira = reference phone polarization R-axis (deg.)
ita = reference phone polarization T-axis (deg.)

6.5.2.1 NEZ Format The Northing, Easting, Elevation (NEZ) format is that which the FC-4 unit of a Topcon
EDM (electronic distance measurement) survey tool outputs. In terms of a fortran specification, it is 5A12 format.
Strings are converted to numbers by programs that read NEZ files. The best NEZ data are actual survey data. But
absent that, one can use tools to build an NEZ file (like bnez).

columns:
12345678911111111112222222222333333333344444444445555

01234567890123456789012345678901234567890123

1 0.000000 0.000000 0.000000 SP001
2 0.000000 0.000000 0.000000 SP002
3 0.000000 0.000000 0.000000 SP003
4 0.000000 0.000000 0.000000 SP004

12345678911111111112222222222333333333344444444445555
01234567890123456789012345678901234567890123

Program topcon2 is written in the C-language. For those with Bison files, see the next section.

6 USING BSU 53

6.5.3 Setting Geometry Bison Data: [genref-> geom->geom2(go1)]

The program genref is an interactive program to aid in setting geometry. It creates files geom, geom2, go1, *.xyz,
*.nez. For example, type genref from a text window. The following is a captured log:

CDP Roll-a-long Pattern Generator
Bison Format Data

-----------SOURCES-----------------------------
Enter 6 char. name for nez file (ex. STP001)

REF001
Enter 4 char. LINEID

0001
Enter Z-Datum: Elevation

500.
Enter number of shots

1
Enter Shot Record Names 8char: First

LOST0001
Enter Shot Record Names 8char: Last

LOST0001
Enter First Shot Station Number

01
Enter First Source: x, y, z

0, 0, 100.
Enter Last Source: x, y, z

0, 0, 100.
Enter number of receivers in a shot gather

12
Enter TOTAL NUMBER of stations on line

12
Enter First Geophone Station: x, y, z

0, 140., 100.
Enter Last Geophone Station: x, y, z

0, 250., 100.
Enter first shot NEAR GEOPHONE station

01
Enter first shot FAR GEOPHONE station

12

In this example, there is only one shot gather, Bison file named LOST0001. We are creating an *.nez file,
REF001.nez. The Z-Datum is the elevation that all following elevations are measured from. Here, we set that to
500. Then later, the geophones and shots are specified as being 100. meters above that (final elevations are thus
600. meters). The generated file, REF001.nez is:

0001 0.0000 0.0000 600.0000 SP001
0001 140.0000 0.0000 600.0000 VP001
0002 150.0000 0.0000 600.0000 VP002
0003 160.0000 0.0000 600.0000 VP003
0004 170.0000 0.0000 600.0000 VP004
0005 180.0000 0.0000 600.0000 VP005
0006 190.0000 0.0000 600.0000 VP006
0007 200.0000 0.0000 600.0000 VP007
0008 210.0000 0.0000 600.0000 VP008
0009 220.0000 0.0000 600.0000 VP009
0010 230.0000 0.0000 600.0000 VP010
0011 240.0000 0.0000 600.0000 VP011
0012 250.0000 0.0000 600.0000 VP012

6 USING BSU 54

The generated files geom, geom2, go1 must be set to executable using the command
chmod +x g*
(assuming there are no other files starting with the letter “g”). File geom has a record for each shot. Here, there is
only one line:

topcon REF001.nez LOST0001 0001 0.0 1 12 001 012 1 0. 0 0 0 0

The call to topcon captures sample interval, number of samples, date of shooting, etc from LOST0001, the
Bison file. It combines that information with the REF001.nez file geometry to create a file LOST0001.xyz which
is then needed later by script go1 which is called from geom2 shown next:

go1 001

Here is the script go1:

bis2seg LOST0$1
bhed LOST0$1.seg LOST0$1.xyz 0

mv bhedLOST.seg L$1.seg
rm LOST0$1.seg

$ In summary after running genref, make the scripts executable and run them in sequence (geom, then geom2).
The result will be file L001.seg in this example. The program bdump produces a partial listing of the headers:

|-------------------------------|
| PARTIAL SEGY HEADER DUMP |
| |
| L001.seg |

Length = 2000 samples | Shot Elevation = 600.0
Sample Interval = 0.00020 sec. | Shot Depth = 0.0
Delay Time = 0 msec. | Up Hole Time = 0 msec
Low Cut Filter = 16 Hz. | Shot X-COORD = 0.00
High Cut Filter = 500 Hz. | Shot Y-COORD = 0.00
Line ID: 0001 | Shot Date (year.moday) = 1992.0303
Shot Orientation: | Shot Time (hr:min) = 17:07
Azimuth= 0 Deg. Vertical= 0 Deg.| Charge Size (grams)= 0

TRACE|SHOT| STATION | OFFSET| RECEIVER |VERT|1STBRK|K-GAIN|AZI|VER|

#	REC.	SHOT REC		ELEV. X-COORD Y-COORD	FOLD	(SEC.)	(dB)		

1 | 1|001 001 | 140.00| 600.00 0.00 140.00| 1|0.0000| 60 | 0| 0|
2 | 1|001 002 | 150.00| 600.00 0.00 150.00| 1|0.0000| 60 | 0| 0|
3 | 1|001 003 | 160.00| 600.00 0.00 160.00| 1|0.0000| 60 | 0| 0|
4 | 1|001 004 | 170.00| 600.00 0.00 170.00| 1|0.0000| 60 | 0| 0|
5 | 1|001 005 | 180.00| 600.00 0.00 180.00| 1|0.0000| 60 | 0| 0|
6 | 1|001 006 | 190.00| 600.00 0.00 190.00| 1|0.0000| 60 | 0| 0|
7 | 1|001 007 | 200.00| 600.00 0.00 200.00| 1|0.0000| 60 | 0| 0|
8 | 1|001 008 | 210.00| 600.00 0.00 210.00| 1|0.0000| 60 | 0| 0|
9 | 1|001 009 | 220.00| 600.00 0.00 220.00| 1|0.0000| 60 | 0| 0|

10 | 1|001 010 | 230.00| 600.00 0.00 230.00| 1|0.0000| 60 | 0| 0|
11 | 1|001 011 | 240.00| 600.00 0.00 240.00| 1|0.0000| 60 | 0| 0|
12 | 1|001 012 | 250.00| 600.00 0.00 250.00| 1|0.0000| 60 | 0| 0|

If there are any problems, or if one wishes to customize the geophone or shot orientations, that can be done by
editing the *.xyz file and rerunning geom2. For setting down-hole data, see 6.7.5.

6 USING BSU 55

6.6 Plotting Seismic Data
Displaying seismic data in bsegy format is fundamental to evaluating data quality, processing of the data, and
interpretation of the data. Much can be gained or lost from our view depending on how we decide to view or plot
the data. BSU has its own program, bplt, which can be used in conjunction with other processing steps to view
engineering seismic data (or any other digital signals, including those from earthquake recordings). In addition to
the BSU program bplt, one can employ other freely available software to view bsegy format data. For the examples
here, we will assume that one has a BSEGY data set and done the conversions to BSEGY (see section 6.1.1 for an
example of how to do this).

6.6.1 Using bplt

The help facility for bplt is displayed by typing the following in an x-terminal: bplt -h

This will produce a listing of the command line parameters. The list is a bit long, as is shown below:

|---|
| Basic Seismic Utilities (BSU) C-LANGUAGE |
ONLINE HELP:
Plot Seismic Traces using X or PostScript
for the output device

bplt infile idev iorient itype 1tr Ltr tmin tmax istyl amp percnt xaxis
yaxis

infile = input file name
idev = output device

0= xwin/wxt (Linux/MS Windows)
1= Post Script
2= xfig
3= jpeg
4= PDF

iorient = orientation
0= landscape
1= portrait

itype = select non-time axis type
0= trace number
1= offset
2= geophone z-coord
3= geophone x-coord
4= geophone y-coord
5= shot z-coord
6= shot x-coord
7= shot y-coord

1tr = first trace to plot
Ltr = last trace to plot
tmin = minimum time to plot
tmax = maximum time to plot
istyl = style of plot

0= wiggle plot
1= black/white variable area
2= black/grey variable area

amp = amplitude for 1 trace deflection
percnt = percent overplot 100= 1 trace
xaxis = length of x-axis (non-time) in inches
yaxis = length of y-axis (time) in inches
(if xaxis and yaxis absent, 6.0 by 4.0 inches

6 USING BSU 56

6.6.1.1 Example bplt There is a wide range of amplitude variation in most data. Program bplt plots the num-
bers as given. Here is an example using the “postscript” choice of “idev”. Figure 1 shows the plot produced.

bplt twav.seg 1 1 2 1 78 0 .2 1 400 200 5 2

830 835 840 845 850
0

50

100

150

Geophone Elevation [amp=400.000 percnt=200 twav.seg]

T
im

e
 (

m
s
)

Figure 1: Example use of bplt to generate Post Script plot of down-hole data. Traces are plotted by geophone
elevation. Data from a Boise River gravel borehole, B5.

We can zoom in, and plot a single trace. Doing so illustrates how much the data have been plotter clipped. For
example, Figure 2 a single trace, number 41 (geophone at about 840 m elevation).

bplt twav.seg 1 1 0 41 41 0 .20 1 1500 300 5 2

40.0 40.5 41.0 41.5 42.0
0

50

100

150

Trace Number [amp=1500.000 percnt=300 twav.seg]

T
im

e
 (

m
s
)

Figure 2: Example use of bplt to focus in on a single signal, trace 41.

Several arguments on the command line have changed. The first and last trace change from 1–78 to 41–41. The
“amp” option changed from 400 to 1500. The larger the number, the smaller the deflection produced on the plot.
Before, a value of 400 would plot at 1 trace spacing, now a larger sample value (1500) plots one trace deflection.
But, there is a limitation on this, the plotter clip. The “percnt” option sets a limit the clips the plot of a sample
value in terms of trace spacings. For example, in Figure 1, this was set to 200%, or 2 trace spacings. This is done
to prevent traces plotting over each other. When we plot a single trace, as in Figure 2, we use two arguments to
bring the entire amplitude range for that trace into view. We expand the permitted deflection to 300%, and set the
plot deflection for a single trace spacing to require a larger amplitude (1500)

6 USING BSU 57

6.6.2 Using bplt in a bash script

BSU comes with some example bash scripts. The scripts xplot and psplot are examples of how we can combine
trace equalization with plotting, and default a number of bplt parameters. As can be seen from the listing below,
the script prompts the user for some values, then scales the data with either bscl or bequ before plotting.

#!/bin/sh
$Id: psplot,v 1.2 2009-05-05 19:43:43 pm Exp $
#
Script to plot seismic data in Postscript format using BSU program bplt $
#Author: P. Michaels <paulmichaels@boisestate.edu>
#set -x
XDIM=5
YDIM=2

if test "$1" = "-h"
then
echo "USAGE: xplot filename tmax scaling"
echo ’Scaling Choices:’
echo ’1= Peak Absolute Value of profile’
echo ’2= L2 Norm of profile’
echo ’3= Trace by trace L2 Norm’
else
if test "$1" = ’’
then
echo ’Enter input file name’
read FILEN
else
FILEN=$1
fi

if test "$2" = ’’
then
echo ’Enter tmax’
read TMAX
else
TMAX=$2
fi

if test "$3" = ’’
then
echo ’Enter Scaling Choice’
echo ’1= Peak Absolute Value of profile’
echo ’2= L2 Norm of profile’
echo ’3= Trace by trace L2 Norm’
read SCL
else
SCL=$3
fi

NAME=‘basename $FILEN .seg‘
NAME4=‘echo $NAME | gawk -F "" ’{print $1$2$3$4}’ ‘
case $SCL in
1)
bscl $FILEN 1 500 3
AMP=‘gawk ’/Peak Absolute Value/ {print $4}’ bscl$NAME4.lst‘
rm -f bscl$NAME4.*
PFILEN=$FILEN
bplt $PFILEN 1 1 0 1 500 0 $TMAX 1 $AMP 200 $XDIM $YDIM
;;

2)
bscl $FILEN 1 500 1
AMP=‘gawk ’/L2 Norm of Data Set=/ {print $6}’ bscl$NAME4.lst‘
rm -f bscl$NAME4.*
PFILEN=$FILEN
bplt $PFILEN 1 1 0 1 500 0 $TMAX 1 $AMP 200 $XDIM $YDIM
;;
3)
bequ $FILEN 0 $TMAX
PFILEN=bequ$NAME4.seg
AMP=4
bplt $PFILEN 1 1 0 1 500 0 $TMAX 1 $AMP 200 $XDIM $YDIM
rm -f bequ$NAME4.*
;;
esac
rm -f bplt*.lst
fi

6 USING BSU 58

There are two ways to run this script. One can simply type psplot and then be prompted for the data set name,
the maximum time to plot, and the type of scaling to use. Alternatively, one can type all the arguments on the
command line:

psplot twav.seg .2 3

which produces a plot as shown in Figure 3.

0 20 40 60
0

50

100

150

Trace Number [amp=4.000 percnt=200 bequtwav.seg]

T
im

e
 (

m
s
)

Figure 3: Example use of the psplot script. Data are rescaled by the L2 norm (option 3) of each trace before
plotting by bplt

Another useful script is xplot. It plots the data using the X11 x-window device, and is very similar to the psplot
script.

6.6.3 Plotting with traplt

If you really want to examine the data, sample by sample value, then use the program traplt. This program generates
an old school lineprinter type listing. In addition to a plot of the signal, you also get a frequency spectrum. Let’s
say we wish to examine the first major trough in trace 41, using bplt, we might execute this command:

bplt twav.seg 1 1 0 41 41 .05 .06 2 1500 300 5 2

That would produce a plot as shown in Figure 4.
However, if we wish to see the actual sample values (in this case, in units of µvolts), we execute the following

command:

traplt twav.seg 0. .2 41 0 1

and page down to samples 251 through 300. This is the large negative also visible in Figure 2

6 USING BSU 59

40.0 40.5 41.0 41.5 42.0
50

52

54

56

58

Trace Number [amp=1500.000 percnt=300 twav.seg]

T
im

e
 (

m
s
)

Figure 4: Using bplt to focus on trace 41 from 50 to 60 msec in time.

max= 0.6539936E+03 min=-0.1014899E+04
j x(j) ...

251 0.3774579E+02 | .* |
252 0.1636029E+02 | * |
253 -0.5172668E+01 | * |
254 -0.2949243E+02 | *. |
255 -0.5731537E+02 | **. |
256 -0.8488977E+02 | ***. |
257 -0.1139543E+03 | ****. |
258 -0.1435989E+03 | ****. |
259 -0.1739700E+03 | *****. |
260 -0.2052856E+03 | ******. |
261 -0.2369359E+03 | *******. |
262 -0.2657293E+03 | ********. |
263 -0.2946696E+03 | *********. |
264 -0.3198569E+03 | **********. |
265 -0.3436373E+03 | **********. |
266 -0.3639295E+03 | ***********. |
267 -0.3823533E+03 | ************. |
268 -0.4009266E+03 | ************. |
269 -0.4172845E+03 | *************. |
270 -0.4305879E+03 | *************. |
271 -0.4431530E+03 | *************. |
272 -0.4572617E+03 | **************. |
273 -0.4737784E+03 | **************. |
274 -0.4913515E+03 | ***************. |
275 -0.5107348E+03 | ***************. |
276 -0.5340413E+03 | ****************. |
277 -0.5633405E+03 | *****************. |
278 -0.5983062E+03 | ******************. |
279 -0.6352686E+03 | *******************. |
280 -0.6775207E+03 | ********************. |
281 -0.7210417E+03 | **********************. |
282 -0.7679259E+03 | ***********************. |
283 -0.8153746E+03 | *************************. |
284 -0.8634789E+03 | **************************. |
285 -0.9100562E+03 | ***************************. |
286 -0.9509911E+03 | *****************************. |
287 -0.9814030E+03 | *****************************. |
288 -0.1004137E+04 |******************************. |
289 -0.1014899E+04 |******************************. |
290 -0.1012347E+04 |******************************. |
291 -0.9976479E+03 |******************************. |
292 -0.9661345E+03 | *****************************. |
293 -0.9193480E+03 | ****************************. |
294 -0.8567044E+03 | **************************. |
295 -0.7788740E+03 | ***********************. |
296 -0.6881360E+03 | *********************. |
297 -0.5870426E+03 | ******************. |
298 -0.4769774E+03 | **************. |
299 -0.3637875E+03 | ***********. |
300 -0.2464730E+03 | *******. |

...
TMIN= 0.000 TMAX= 0.200 TRACE= 41 DELT=0.0002 FILE: twav.seg

6 USING BSU 60

The above example illustrates how one may sort out digital clipping from plotter clip. Trace 41 was recorded
at a depth near 840 m elevation. In Figure 1, this first major trough appears clipped. This is only plotter clip,
due to the choice of plotting parameters. Figures 2 and 4 show that one could choose other parameters for bplt to
investigate the question of clipping. However, traplt takes us right to the sample values themselves. Data which
have been digitally clipped are quite different. Such data clipping occurs when the signal is too large for either the
geophone or the amplifier. Then a sequence of samples will have identical values out to the precision of the A/D
converter. A quick way to quality check for digital clipping is to integrate the data. Clipped data will drift either
positive or negative when integrated . You can integrate data with the program bint.

6.6.4 Plotting with SU

If you have installed Seismic Unix (SU), you might wish to use the example scripts xPlot-su and psPlot-su. The for-
mer can be used to generate a handy interactive X11 x-window plot. The latter creates a Postscript file, analogous
to the BSU script psplot. The psPlot-su script is as follows:

#!/bin/sh
Script to call Seismic Unix Plotting
fill=2 for grey fill of troughs
Trace equalization with sugain if pbal=1
d1num controls time lines, f2 controls vertical axis label
Author: P. Michaels
set -x
if test "$1" = ’’
then
echo ’Enter input file name’
read FILEN
else
FILEN=$1
fi
if test "$2" = ’’
then
echo ’Enter tmax’
read TMAX
else
TMAX=$2
fi
if test "$3" = ’’
then
echo ’Enter Title’
read TITLET
else
TITLET=$3
fi
segyclean <$FILEN | \
suwind tmax=$TMAX | \
sugain pbal=1 |
supswigp xcur=1. style=normal \
clip=1 \
fill=2 \
linewidth=0 \

xbox=1.0 wbox=4.0 \
perc=98. \
ybox=6.5 hbox=3.65 \
nbpi=300 grid1=solid grid2=solid \
titlesize=10 labelsize=10 \
title="$TITLET $FILEN" \
label1=" Time (s)" \
d1num=.05 \
f2=-19.60 d2=.25 label1=" Time (s)" label2="Elevation (m)" \
>$FILEN.ps

gv $FILEN.ps

The above script assumes you have ghost view “gv” installed at the end. If you don’t, just comment out or delete
that line and use your favorite tool to view the Postscript file generated. The script uses the SU program segyclean
to remove BSEGY header info that conflicts with SU formatted data. The SU program, suwind windows the
date for the time limits to be plotted. Then SU program, sugain, is analogous to BSU program bequ and trace
equalizes the data. Finally, the SU program, supswigp does the actual plot generation. The line starting with “f2”
is customized for the data set inquestion and sets the depth axis labels. Use BSU program, bdump to determine the
deepest geophone depth (here that is −19.6 meters). The geophone increment is 0.25 meters. Figure 5 is the result
of the following command:

6 USING BSU 61

psPlot-su twav.seg .2 pbal=1

The command line arguments are the data file name, maximum time to plot, and an arbitrary text string to label the
plot. Here, that string is “pbal=1”.

If you don’t have SU, I recommend it highly, as it is well supported, but must be compiled from an unpacked
TAR archive. To obtain SU, point your web browser to http://www.cwp.mines.edu/cwpcodes/index.html. Running
SU is beyond the scope of this document. The CWP project has excellent documentation which also can be
downloaded from their web site. The purpose here is to demonstrate the ease of processing between the two
environments. This ease results from the similarity of the data formats unless . . .

MAJOR CAUTION: Beginning around 1997, seismic unix can be compiled two different ways. They have a
new external data floating point format, XDR. Seismic Unix provides a program that converts old format SU data
to new XDR format. That command is suoldtonew <oldsu >newsu. It does not appear that a inverse program has
been distributed. Because BSU does not use XDR format, you will not be able to enjoy the ease of mixing BSU
with SU processes, should you compile SU with the XDR format chosen in the Makefile.in file. However, I have a
work-around.

Work-A-Round: With this most recent release of BSU, you can now use the byte swap program, bswp, to
toggle between the original SU data format and the XDR version. You could also generate a SEGY data set from
a SU XDR data set (using SU program segywrite). Then use the BSU program, bcnv, to read it in to the BSU
environment. But byte swapping is faster since both the traditional SU, BSU, and SUXDR are all IEEE encodings
of floats. Only SEGY uses IBM big endian floats. What I do is ignore SU recommendations, and compile SU
without XDR support. On personal computers running linux, this seems to be the easiest thing. There may be
situations where different platforms are NFS sharing a data set that makes XDR desirable. That is not, however, a
typical situation for most users.

0 0.05 0.10 0.15
 Time (s)

−15

−10

−5

E
le

v
a
ti
o
n
 (

m
)

pbal=1 twav.seg

Figure 5: Using Seismic Unix (SU) to plot BSEGY data, script psPlot-su used.

6.6.5 Plotting with Gnuplot

As an alternative to Plplot, BSU programs can be compiled to pipe the graphics through the Gnuplot program
(installed with your package manager). For compiled BSU using the --enable-all-static option, Gnuplot is
the default for all BSU plotting programs.

 http://www.cwp.mines.edu/cwpcodes/index.html

6 USING BSU 62

IMPORTANT: After Gnuplot 4 a bug appeared so that only the positive numbers are plotted with Gnuplot 5
on a system. The fix is to compile BUS with the --with-gnuplot5 option. Specifying this option will work for
both Gnuplot 4 and 5 installations, but the *.gp files generated will be twice as large.

In any case, if BSU has been compiled with the Plplot configuration option, --with-plplotlib, there are
still a few programs that only use the Gnuplot facility. These programs are:

• qplt – Quick plot for a profile. The command line options are:
filename tmin tmax
See figure 6 for an example.

• tplt – Single trace plot. The command line options are:
filename trace tmin tmax
See figure 7 for an example.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.2 0.4 0.6 0.8 1 1.2

 T
ra

ce
 N

um
be

r

 Time (s)

 c008.seg Data Rescaled By Max Abs Values

Figure 6: Plot of surface wave data using qplt. The qgraph.gp output file was edited to make a Postscript figure,
and that is shown here.

6 USING BSU 63

-200000

-150000

-100000

-50000

 0

 50000

 100000

 150000

 200000

 0 0.05 0.1 0.15 0.2 0.25

 Time (s)

 c008.seg

 Trace 1

Figure 7: First trace of figure 6 surface wave data using tplt.

6.6.6 Plotting with Octave

BSU also comes with some example Octave programs which read the binary BSEGY format data and generate a
plot. The program traplt.m is analogous to the BSU program traplt presented in section 6.6.3 above. While that
was a “line printer” type of plot, the Octave version is GUI enabled. Other examples given below demonstrate
other ways to plot with Octave.

6.6.6.1 Running traplt.m

1. Start an Octave session

2. In the Octave text window, enter the command:

traplt;

3. In the octave text window, enter the name of the file to be plotted when prompted.

4. The program calls two functions, segyinfo.m and bsegin.m. The first determines the number of traces in the
file, the sample interval, and other details. The second is later used to read a trace from the binary BSEGY
file.

5. An input GUI will pop up for entry of maximum time to plot and trace to plot. The defaults are the maximum
recorded time and the last trace. Change these to what you want.

6. A plot of the signal should appear, along with a message GUI to pick a time zero for the phase plot. This
will rotate the unwrapped phase.

7. Click OK on the message GUI, then move the mouse into the waveform plot and click a time zero reference.

6 USING BSU 64

8. Another GUI will pop up with the maximum frequency to plot in Hz. Modify the entry as desired and click
OK.

Plots can be saved using the menu bars. Figure 8 shows the data from trace 10 of a surface wave data set.

0 0.2 0.4 0.6 0.8 1
−20000

−10000

0

10000

20000

30000

Time (s)

Trace 10 tmax=1.250 sec. dt=0.00050

0 20 40 60 80 100
0

500000

1e+06

1.5e+06

2e+06

Frequency (Hz)

A
m

p
lit

u
d
e

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

U
n
w

ra
p
p
e
d
 P

h
a
s
e
 R

a
d

(A) (B)

Figure 8: Plots produced by traplt.m. (A). Time domain (B). Frequency Domain

6.6.6.2 Running profplot.m This program produces a quick simple wiggle line plot of all the traces in a file.
The plot GUI can be manipulated or saved as in Figure 9.

profplot;

6.7 Down-hole Seismic Processing
The data chosen for this example were acquired at the GeoLogan97 field day held on 15 July 1997, in Logan, Utah.
GeoLogan was the first annual convention of the Geo-Institute of ASCE (American Society of Civil Engineers).
The site was at a location in the valley floor, below Utah State University. Surface soils were silt. This example
illustrates the steps needed to process data from the Bison Engineering Seismograph field records to a final vertical
profiles for P- and SH-waves. An Octave procedure is used to invert for soil stiffness and damping properties.

You may download the Geologan97 data set at the BSU Database web page.
Go to https://doi.org/10.18122/geo_data/3/boisestate. The files are in ID-101.zip.
Or go to https://173.255.241.228/BSU/index.php. Click on the check boxes for 1997, Utah, and then on submit. It
will list 3 download archives. ID-101.zip is the raw bison files with some scripts that will assign geometry. Run
geom followed by geom2. To learn how these two scripts were generated, see section 6.7.5 below.

Alternatively, if you wish to start with SEGY data files, the other two *.zip archives are also available for
download.

6.7.1 Seismic Source (SH- and P-wave)

BSU can handle a variety of seismic sources for down-hole engineering surveys. A vertical impact hammer source
is used when the interest is primarily in recording P-waves on the vertical down-hole component. The hammer
may be instrumented with a load cell (in which case an extra, 7th channel of data are recorded). Or the hammer
can be without any instrumentation (other than contact closure for triggering). A horizontal hammer serves when
the primary interest is in recording SH-waves on the horizontal down-hole components. In this example, my 135

https://doi.org/10.18122/geo_data/3/boisestate
https://173.255.241.228/BSU/index.php

6 USING BSU 65

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-50

-40

-30

-20

-10

0

10

Time (s)

48 traces tmax=1.250 sec. dt=0.0005

Figure 9: Plots produced by profplot.m.

degree inclined hammer source is used. This source delivers both horizontal and vertical motion to the ground.
The source is nailed to the soil. The source is shown in Figure 10.

A sign convention for hammer sources has been adopted in BSU. One mentally associates an arrow with the
blow. The arrow points in the direction of the blow, and can also be thought of as a unit vector. Thus, in Figure
10, if we assume that East is on the right, the hammer blow would be represented by the spherical coordinate
designation (270,135)=(azimuth, angle from the vertical). Vertical angles are measured from zenith=0 degrees,
to nadir=180 degrees. Horizontal, azimuthal angles, are measured from North=0 degrees, increasing clockwise
(when viewed from above), making West=270 degrees. The BSU header stores both the horizontal and vertical
angle for the source.

Data collection with this source involves two source polarizations for each sampled subsurface geophone sta-
tion. In a typical survey, the geophone is lowered to the bottom of the hole, clamped with a mechanical bow spring
clamp (I use a GeoStuff BHG-2 down-hole geophone [4]), and then dragged up the hole to occupy stations at a
0.25 meter interval. As the geophone remains fixed at a station, two separate seismic recordings are stored. One
is for a source polarization of (270,135), and the other for a source polarization of (90,135). Subtraction of the
records enhances SH-wave motion at the expense of Rayleigh and P-waves (as seen on horizontal components).
Summing the two records has the opposite effect. For a more detailed discussion on wave field enhancement, see
Michaels [12].

6.7.2 Down-hole and Reference Geophones

The BSU sign convention for geophones is similar to that for sources. An arrow or unit vector is associated
with each geophone element. Ground motion in the direction of the arrow will generate a negative voltage at
the geophone, and be recorded as a negative number on the seismic trace. For a typical moving coil “velocity”
phone, this voltage is proportional to particle velocity of the soil, as sensed by the geophone at the point where it
is clamped to the soil. Figure 11 shows a plan view of the typical survey for which BSU was written.

There are two 3-component geophones. One is fixed at the surface (or buried very shallow). This reference
phone provides a way to monitor variations in the source waveform and recorder triggering. In Figure 11, the
horizontal, R-component of the reference phone is designated (0,90), and the T-component (270,90). The vertical
component arrow (not shown) is (0,0), pointing to zenith. The azimuth for the vertical component is meaningless,
and so is set to zero for simplicity. The down-hole phone is free to spin on the way down, and so its orientation
must be determined for each down-hole station. This is the job of the Principal Component Analysis (PCA), and

6 USING BSU 66

Figure 10: Source generates both horizontal and vertical motion

R

T

Borehole

Reference

Phone

R
T

Seismic Source

90 270

N

1 m

1 m

o o

East (90 deg)West (270 deg)

Zenith (0 deg)

Nadir (180 deg)Sou
th

(1
80

 d
eg

)

(270,135)

(270,90)

(0,180)

(azimuth,vertical)

Figure 11: Plan view of a typical survey. Coordinate system for geophone components and impact forces.

6 USING BSU 67

will demonstrate the use of the program, bhod, named for the hodogram in the horizontal plane. The use of the
labels R and T on horizontal components is purely arbitrary in down-hole surveys. You will note that in Figure
11, the chirality is not consistent (left handed vs right handed). Your geophones may be quite different, but the
sign convention is what is important, and this can be determined by a tap test, or a shallow level where the tool
orientation can be observed directly by sight. A very important observation at the end of each survey is to note
and record the bow spring azimuth as the tool exits the hole. On the GeoStuff tool, the spring is aligned with the
R-component. Knowing this direction is essential to establishing a guide vector for the PCA analysis which has an
inherent 180 degree ambiguity. The vertical down-hole component points to zenith in the GeoStuff tool. Not all
tools are constructed this way, so you need to check your tool to determine its actual orientation. The down-hole
vertical component is designated (0,0).

Each seismic trace will have header values for the geophone and source polarization (unit vectors in spherical
coordinates). These are stored as integers in the BSEGY header. Aside from looking at the include files, the header
definitions can also be reviewed with the man pages. For Fortran definitions, type:

man bsegy

You will find integer*2 header values for shot and geophone polarizations (shtazi, shtver, geoaz, and geover).
For C-language definitions, type:

man c_bsegy

Thus, in C you will find the header structure elements hd.geoazi and hd.geover contain the azimuth and vertical
angles of the geophone. The corresponding shot polarization is stored in hd.shtazi and hd.shtver.

6.7.3 Sample Data Set from GeoLogan97

If you have downloaded the sample data set, it will be located in directory PREFIX/ID-101/1997/15jul/bison,
where the PREFIX is your choice of top directory location. The READ.ME file included with the sample Bison
data can be used as a reel header, and documents the experiment and local geology determined by a ConeTech
survey. To run genvsp, we need to know the experimental geometry as recorded in the observer’s log.

OBSERVER’S LOG

• Global Coordinates of Borehole (x,y,z)=(100.0,100.0, 1.025) in meters. BSU defines “Global” coordinates
as being whatever coordinate system you are working in, usually set by the project you are tying into. Here,
I have made up a value of (x,y) to illustrate how the codes work. The z-coordinate is the top of the casing
stub from which down-hole measurements are taken. Normally, the casing elevation would be with respect
to sea level. However, in this case, it is relative to the ground surface, since the field day did not include a
survey tie in to a bench mark. Note that the z-axis is +UP in global coordinates.

• Local Coordinates of the Source (x,y,z)=(0.0, 1.24, 1.025). The local coordinate system is different, and is
taken relative to the bore hole (which is at the origin). Note that the z-axis is + DOWN in local coordinates.
The source was oriented with the long axis being East-West, the center of the source was 1.24 meters North
of the bore hole.

• Source Polarization of First (and ALL ODD) Files (azimuth,vertical)=(90,135).

• Source Polarization of Second (and ALL EVEN) Files (azimuth,vertical)=(270,135).

• Local Coordinates of the Reference Phone (x,y,z)=(0.0, 2.17, 1.175). The ground was horizontal around
the bore hole (which means that the reference phone was buried 0.15m in this case).

• Depth to Top of Water Table. Normally this would be measured in the bore hole. However, in this case,
it appears that the PVC casing was sealed at the bottom, and the water level in the bore hole was not an
indication of the local water table.

• Geophone Station Spacing. This was 0.25 meters.

• Deepest Geophone Station. This was for the first two shot records (files LOGN0001 and LOGN0002), and
the phone was 19.25 meters below the casing elevation.

6 USING BSU 68

• Shallow most Geophone Station. This was for the last 2 records (files LOGN0145 and LOGN0146). The
phone was at a depth of 1.25 meters below casing elevation.

• Azimuth of bow spring on exiting the bore hole. This was noted at 220o, but in the dialog on PCA analysis,
a guide vector of 240o was found to require less manual corrections to the bhod.lst file.

6.7.4 Where to Find Scripts and Octave Codes

The location of Bash and Octave scripts depends on how BSU was installed.

• If compiled from source:
Bash Scripts: /usr/local/share/scripts
Octave Programs: /usr/local/share/octave/site-m

• If installed as a Debian, *.deb, package:
Bash Scripts: /usr/share/
Octave Programs: /usr/share/octave/site-m

6 USING BSU 69

6.7.5 Converting Bison Files to BSEGY Format and Setting Geometry

The conversion and geometry setting begins with program genvsp. Change to the directory with the Bison files.
From the command line, run the interactive geometry setting program, genvsp by typing:

genvsp

The following is the dialog between the program and user (user response boxed).

|---------------------------------|
| Copyright (C) 2017 P. Michaels |
| All rights reserved |
see GNU General Public License

Down-hole VSP Pattern Generator
For Setting Geometry
Handles both Bison and SEG-2 File Formats

Set Channel Order Switch
1=ascending 1,2,3=downhole 4,5,6=reference

-1=descending 6,5,4=downhole 3,2,1=reference
2=ascending 1,2,3=down 4,5,6=ref,7=load_cell

-2=descending 7=load_cell,6,5,4=down 3,2,1=ref

1

-----------BOREHOLE----------------------------
Enter 6 char. name for nez file (ex. STP001)

logn01
Enter 4 char. LINEID

0001
Enter Z-Datum: Casing Elevation

1.025

BOREHOLE LOCATION:
Borehole is origin of the local coordinate system
Source and Reference phone locations are x,y
relative to borehole.

Following entries will shift every x,y input to
a final global coordinate system:
Enter Global x-coord. of borehole

100.0
Enter Global y-coord. of borehole

100.0
Enter number of sources

2

FOR THIS SOURCE:
Enter Shot Record Names 8char: First

LOGN0001
Enter Shot Record Names 8char: Last

LOGN0145

LOGN0001LOGN0145
Enter Source: x, y, z_sub_CE (positive down)

0., 1.27, 1.025
Enter Source Polarization: azi, ver

90, 135

6 USING BSU 70

FOR THIS SOURCE:
Enter Shot Record Names 8char: First

LOGN0002
Enter Shot Record Names 8char: Last

LOGN0146

LOGN0002LOGN0146
Enter Source: x, y, z_sub_CE (positive down)

0., 1.27, 1.025
Enter Source Polarization: azi, ver
270, 135

-----------REFERENCE RECEIVER------------------
Enter Reference: x, y, z_sub_CE (positive down)

0., 2.17, 1.175
Enter Reference Polarizations: R-azi, T-azi
0, 270

-----------BOREHOLE PHONES---------------------
Enter Bulk Shift (Added To Geophone Depth ONLY)

0.

For Shot: SP01 AZI= 90 VER=135

Enter Station Spacing: dz

.25
Enter First Station Depth: zmax
19.25

Enter Last Station Depth: zmin
1.25

For Shot: SP02 AZI=270 VER=135

Enter Station Spacing: dz

.25
Enter First Station Depth: zmax
19.25

Enter Last Station Depth: zmin
1.25

Number of receivers = 73

CHECK DATA TYPE

Files like XXXX0001 detected, ID=BISON
Is above ID Correct, or overide needed?
1=YES correct 0=NO incorrect

1

Number of receivers = 73

CHECK DATA TYPE

Files like XXXX0001 detected, ID=BISON
Is above ID Correct, or overide needed?
1=YES correct 0=NO incorrect

6 USING BSU 71

1

The above dialog between the program and user creates the following files:

• logn01.nez survey file with 5 columns: [index y-coord x-coord z-coord char_label]

• geom first script to run, calls program, topcon.

• geom2 second script to run, calls script go1

• go1 script called by geom2, calls programs bis2seg and bhed.

You will need to change permissions to execute (files geom, geom2, go1). Conversion from Bison to BSEGY and
the setting of geometry is done by:

1. Run geom creates files LOGN0001.xyz to LOGN0146.xyz which contain geometry

2. Run geom2 creates files L001.seg to L0146.seg which are in BSEGY format.

6.7.5.1 Post genvsp processing steps

1. Removing the *.xyz files if they appear OK. These are in bhed format. The bhed program was run in script
go1 called by geom2.

2. Removing the *.lst files if they appear OK. These files are created by bis2seg and contain a listing of the
Bison file header information. Program, bis2seg, was run in the go1 script called by geom2.

3. Gzip the Bison files to save disk space.

4. Move the L*.seg files to a new directory. For example:

mv L*.seg ../seg

assuming that the directory ID-101/1997/15jul/seg exists.

The newly created *.seg files in BSEGY format have the majority of the header information set. What is missing
is the horizontal component orientation of the down-hole tool. For that, we must run programs genbhod and bhod.

6.7.6 Determining Down-hole Tool Orientation by PCA

The geometry will be complete once the down-hole tool horizontal component orientation has been established
as described in Michaels [12]. We begin by running the genbhod program which builds scripts that control the
hodogram analysis by program bhod. The following is the dialog between genbhod and the user (boxed). The
program is run from inside the directory with the newly created L*.seg files (created from Bison format):

|---------------------------------|
| Copyright (C) 2017 P. Michaels |
| All rights reserved |
see GNU General Public License

WARNING: !!
See Source Code, genbhod.f, or BSU documentation
(man pages and BSU user Guide)
before you use this program. It is hardwired for
a specific type of acquisition.

enter 1char_ALPHA PREFIX

L

6 USING BSU 72

enter FIRST FILE NUMBER (<=3digits)
for which source polarization is 270 deg.

2

enter LAST FILE NUMBER (<=3digits)
for which source polarization is 270 deg.

146

enter UP/DOWN SWITCH
-1= 90 Azimuth File Number 1 LESS than 270 Az
+1= 90 Azimuth File Number 1 MORE than 270 Az

-1
enter azimuth of bowspring(R-comp)
240

OUTPUT====> Downhole: gobhodo
OUTPUT====> Reference: gobhodoR
OUTPUT====> Downhole: gorunbhod
OUTPUT====> Reference: gorunbhodR
--

REMEMBER to change permissions on the
above files to execute.
--
IF examining the Down-hole Phone

1. Run gobhodo in directory with 6 chan
records (3 down, 3 reference phones)

2. Run gorunbhod in directory with files
that are named hxxxyyy.seg

--
IF examining the Reference Phone

1. Run gobhodoR in the directory with
the 6 channel records.

2. Run gorunbhodR in the directory with
files that are named rxxxyyy.seg

--

Because the tool is fixed for both source polarizations, there will be half as many orientation determinations
as there are seismic files. The tips at the bottom of the dialog are reminders about which scripts are for what
purpose. In a normal case, one generally is only interested in the down-hole tool orientation, and will only run
scripts gobhodo and gorunbhod. If you are interested in viewing the actual rotation of the radiation from the source
with time, then you will run the other two scripts, gobhodoR and gorunbhodR (the upper case “R” being a reminder
that these are for the fixed reference phone). The following steps are recommended:

1. Make a new directory for the hodogram analysis under the current “seg” directory. For example,

mkdir hodo

will do this nicely.

6 USING BSU 73

2. Run the script, gobhodo in the current “seg” directory. This creates a lot of files.

3. Move the files beginning with “h” to the directory “hodo” created in step (1)

mv h*.seg hodo

4. Remove the bscl generated files.

rm bscl*

5. Copy gorunbhod to the “hodo” directory.

cp gorunbhod hodo

6. Change into the hodo directory and run gorunbhod. The important file to save is bhod.lst. It contains a list
of the file numbers with tool orientations. Copy bhod.lst back to the “seg” directory.

7. Run the script, mergeplots, provided in the script directory of the distribution (see 6.7.4). This merges all the
Postscript (*.ps) files into a single PDF file for viewing in a program like acroread (Adobe Acrobat).

8. Remove the *.ps files, and view the file, merge.pdf .

9. Look for 180oreversals in polarity, particularly if the tool had to be released during any part of the survey
(and hence was free to spin). Sometimes, a slight change in the guide vector azimuth will help on a second
attempt.

Figure 12 shows the plot for the files L141.seg and L142.seg. The SH-wave enhancement involved subtracting the
even from the odd files (see gobhodo script). The result was file h141.seg. It is this file, h141.seg which was then
subjected to PCA analysis by program bhod.

Figure 12: PCA result (file h141plt.ps) for near surface geophone station.

Since this is a shallow station, it corresponds to the observed orientation of the bow spring when the tool
exited the hole. Without the guide vector (set at 240o in the dialog above), the resulting R-component direction

6 USING BSU 74

could easily have been rotated by 180o due to the inherent ambiguity in the eigenvector solution. The line in the
file bhod.lst corresponding to this station is: 00141 209.5 299.5 from which you can see the meaning of the 3
columns. The first column corresponds to the file number, the second column the R-component azimuth, and the
third column is the T-component azimuth. The values will be truncated to integers when written to the headers by
program btor.

There is one case in which bhod returned a tool orientation rotated by 180o. This is for the deepest level. The
tool twisted enough during the survey to make the single guide vector insufficient. With only one problem, it is
easier to edit the bhod file directly.

Figure 13 shows the problem with the deepest level. In the figure are two hodograms, one for h001.seg, and
the other for h003.seg (the next shallower station). You will see from examining file merge.pdf that h003.seg and
shallower levels resulted in a consistent set of tool orientations.

(A) Deepest station off by 180 degrees (B) Station just above, correct result

Figure 13: Deepest level (A) is 180 degrees off from desired as shown in (B)

The way to correct the deepest level here is to change the line in the bhod.lst file. The current first few lines
are:

00001 155.9 245.9 <----this one is in error by 180o

00003 328.6 58.6
00005 323.1 53.1
00007 314.1 44.1

The first line should be manually edited so that these lines become:

00001 335.9 65.9 <----fixed, rotated by 180o

00003 328.6 58.6
00005 323.1 53.1
00007 314.1 44.1

The result is a consistent set of orientations, and one that continues to the surface and agrees with the observed
orientation of the tool as it exited the hole.

6.7.7 Inserting the PCA Results to the Trace Headers (btor)

The next step is to copy the file bhod.lst (after any manual editing) back into the “seg” directory where the files
L001.seg to L0146.seg are located. File bhod.lst will direct the processing of program btor. The command line
help for btor includes the following:

btor -h

6 USING BSU 75

|---------------------------------|
| Copyright (C) 2017 P. Michaels |
| All rights reserved |
see GNU General Public License

|--|
| Basic Seismic Utilities FORTRAN |
ONLINE HELP:
btor: Applies azimuth and vertical angles
to geophone trace headers (from a file)
--

btor lstfil, prfx, isw1 maxtr

lstfil =input list file name (ex. bhod.lst)
prfx =*.seg file prefix (one character)
isw1 =up/down switch

-1=apply to *.lst file and one less
+1=apply to *.lst file and one more
0=IF VERTICAL IMPACT source

maxtr =maximum number of traces in shot record
6= 3 components down-hole, 3 ref-phone
7= 3 down, 3 ref-phone, 1 load cell

In our case, there are 6 channels per shot record (maxtr=6) and the file bhod.lst consists of odd file numbers
(1,3,5, odd). Thus, isw1=+1 so that the solution for file L001.seg will also be applied to L002.seg (2,4,6, even).
The prefix for the 4 character file names is “L”, and of course, the lstfil=bhod.lst. We can run btor with the follow-
ing command:

btor bhod.lst L +1 6

If a load cell channel had been recorded from the hammer, the last argument would have been “maxtr=7”. In the
case of these data, no load cell channel was recorded.

The result of the above btor run will be files with names btorL001.seg through btorL0146.seg. The next step is
to copy these files over the original files named L001.seg throu L0146.seg. In the script directory of the distribution
is a script file, rename-btor, which will do the job. The only parameter it requires is the file name prefix, “L”, in
this particular case. The script may be run by typing

rename-btor L

or

rename-btor

and then be prompted for the prefix. This script is an excellent example of using the find and stream editor
commands, and is as follows:

6 USING BSU 76

#!/bin/sh
#Script to rename files after btor process
#overwrite pxxx.seg files, p=prefix
Author: P. Michaels Date:April 2002 $ee GNU License

if test "$1" = ’’
then

echo ’Enter 1 character prefix’
echo ’Example: w’
echo ’ for files btorw001.seg, btorw002.seg, etc...’
read PRFX

else
PRFX=$1

fi

find -name "$PRFX*.seg" | \
sed s/’\.\/’/’ ’/g | \
gawk ’{print "mv","btor"$1,$1}’ \
>go-rename

chmod +x go-rename
./go-rename
echo "btor files renamed"

Once the script has the prefix character, a find command is issued to get a list of the files L*.seg, and this is
piped through sed editor to remove the leading “.” and “/” characters. The result is piped through gawk (the GNU
version of awk) to construct move commands which are written to a file, go-rename, that file is made executable,
and then executed.

6.7.8 Checking the Headers for Source and Geophone Polarizations(bdump)

The bdump program creates a partial header dump for a BSEGY file.
The normal ascending trace order I use is defined as:

1. down-hole V (vertical)

2. down-hole R (horizontal)

3. down-hole T (horizontal)

4. reference V (vertical)

5. reference R (horizontal)

6. reference T (horizontal)

See section 6.7.5 above, at the beginning of the genvsp run. If you don’t use this order or its reverse, then you may
have to modify the codes. We can check the files L141.seg and L142.seg (recall hodogram of Figure 12) to see if
the headers have been formed correctly. Type:

bdump L141.seg 0
less bdump.lst

the result is the partial header dump for file L141.seg as shown below:

6 USING BSU 77

|-------------------------------|
| PARTIAL SEGY HEADER DUMP |
| |
| L141.seg |

Length = 2000 samples | Shot Elevation = 0.0
Sample Interval = 0.00025 sec. | Shot Depth = 0.0
Delay Time = 0 msec. | Up Hole Time = 0 msec
Low Cut Filter = 4 Hz. | Shot X-COORD = 100.00
High Cut Filter = 1000 Hz. | Shot Y-COORD = 101.27
Line ID: 0001 | Shot Date (year.day) = 1997.0715
Shot Orientation: | Shot Time (hr:min) = 11:48
Azimuth= 90 Deg. Vertical=135 Deg.| Charge Size (grams)= 0

TRACE|SHOT| STATION | OFFSET| RECEIVER |VERT|1STBRK|K-GAIN|AZI|VER|

#	REC.	SHOT REC		ELEV. X-COORD Y-COORD	FOLD	(SEC.)	(dB)		

1 | 141| 001 421| 1.46| -0.73 100.00 100.00| 3|0.0000| 20 | 0| 0|
2 | 141| 001 422| 1.46| -0.73 100.00 100.00| 3|0.0000| 20 |209| 90|
3 | 141| 001 423| 1.46| -0.73 100.00 100.00| 3|0.0000| 20 |299| 90|
4 | 141| 001 424| 0.91| -0.15 100.00 102.17| 3|0.0000| 0 | 0| 0|
5 | 141| 001 425| 0.91| -0.15 100.00 102.17| 3|0.0000| 0 | 0| 90|
6 | 141| 001 426| 0.91| -0.15 100.00 102.17| 3|0.0000| 0 |270| 90|

Note that the two down-hole horizontal traces, 2 and 3, have azimuth R= 209o and T= 299o as determined in
the Figure 12 hodogram. The dump for L142.seg is almost identical to that above, the only differences being the
source polarization (which is azimuth=270o rather than 90o as show here), and of course the time of day.

6.7.9 Using seisazi.m to display azimuth headers

Examining header dumps can be tedious, so an alternative graphical scan helps evaluate the tool orientation solu-
tion. In the directory with the Lxxx.seg files, we can pull off selected channels of the data (using bmrg) and then
plot the geophone azimuth header using Octave. To extract the channel 2 component for the odd shots, we give the
commands:

bmrg L 1 146 2 2 2
mv bmrg.seg bmrg0002.seg

To extract the channel 3 component for odd shots

bmrg L 1 146 2 3 3
mv bmrg.seg bmrg0003.seg

We don’t need more than either the odd or even channels because the tool is fixed for the two source polar-
izations at each depth. Insertion of the azimuth determinations will be identical for any odd-even pair at the same
depth. We start an Octave session and execute the following command from within the Octave text window

seisazi;

One responds to the GUI dialog prompts for file name. Note that seisazi.m requires both segyinfo.m and
bsegin.m to be installed in the directory with the data. One either sets up a path to the *.m files, or copies them
from /usr/local/share/octave/site-m. Combining two runs of seisazi.m results in Figure 14

6.7.10 Rotating the Horizontal Data into Alignment with Source (genbrot and brot)

Once the headers have been updated with the down-hole tool orientation, the next step is to rotate the horizontal
data into a single orientation. This removes any spin that has occurred while dragging the tool up the hole. The

6 USING BSU 78

0 0100 100200 200300 300

−15 −15

−10 −10

−5 −5

Azimuth (degrees) Azimuth (degrees)

D
e

p
th

 (
m

)

D
e

p
th

 (
m

)

 bmrg0002.seg 73 traces tmax=0.500 sec. dt=0.00025 bmrg0003.seg 73 traces tmax=0.500 sec. dt=0.00025

(B) Channel 3(A) Channel 2

Figure 14: Plot of channel 2 and channel 3 geophone azimuth headers. The apparent discontinuity at about 12.5 m
depth is exaggerated by channel 3 passing through North, 0 deg. = 360 deg.

genbrot program is run interactively to generate a script which can then be executed. The script automates running
program brot on all the shot gathers. Program genbrot is set up to process data according to the channel definitions
of section 6.7.8 above. Thus, only the data on traces 2 and 3 are rotated.

The program brot is quite flexible in how to rotate the data. Program genbrot, however, makes a single choice
and would have to be modified if that did not suit a user’s needs. The default choice imposed by genbrot is to align
the data so that the T-component down-hole becomes aligned with the T-component of the reference phone. This
particular rotation was based on the decision to align the T-component of the reference phone with the long axis of
the source (see Figure 11).

The result of the above decisions is to align trace 3 with the long axis of the source, to the extent that the radi-
ation from the source is also aligned with the long axis of the source. While one might think that the source shown
in Figure 10 would radiate SH-motion polarized parallel to the long axis of the source (aligned with the hammer
blows), it appears that variations in soil stiffness under the source can cause a couple, twisting the polarization axis
of the radiation slightly out of alignment with the source axis (see Michaels [12]). Thus, a more proper statement
might be that the horizontal data are aligned with the major axis of the source radiation polarization ellipse, rather
than with the long axis of the source itself.

As a final caution, if a user has not acquired the data with the geometry as shown in Figure 11, the blind
use of the program genbrot may produce unwanted and unexpected results. There are many ways to set up
the source and reference phone about the bore hole (both in location and component orientation). My choice was
designed to permit SH-waves to be recorded from depth to the surface, with as little interference as possible from
other wave fields.

The dialog for genbrot would be as follows:

|--|
| Copyright (C) 2017 P. Michaels |
| All rights reserved |
See GNU General Public License
gbrt: TIME: 16:12:13 DATE: 27/Apr/2017

Enter alpha prefix (char) of *.seg data to be rotated

EXAMPLE: if enter 1, then files 1001.seg to 1010.seg
would be processed if sequence
numbers 1 and 10 entered next

L

6 USING BSU 79

...L
Enter first file number to process

1
Enter last file number to process
146

Output in file===>gobrot

The next step would be to make the bash script, gobrot, executable:

chmod +x gobrot

After running gobrot, you will have files named brotL001.seg through brotL0146.seg. These data are
rotated to the standard orientation described above. Not only are the data rotated, but the headers have been
changed for traces 2 and 3 to reflect their new azimuths.

6.7.10.1 Post brot processing steps With so many files, both rotated and unrotated in the same directory, it can
get a bit messy. The following steps are recommended.

1. Make a new directory for the rotated data. For example,
mkdir brot

2. Move the rotated data to the new directory
mv brot*.seg brot

3. Clean up the current directory:
a). remove the list files
rm -f brot*.lst

b). gzip the unrotated data to save space
gzip *.seg

4. Change to the “brot” directory, since the next steps are executed on the rotated data.

6.7.10.2 Verify Rotation with hodoplot.m There are basically two ways to confirm proper determination of
the tool orientation by PCA, and the application of that determination by rotating the horizontal components to a
standard orientation. One can select a geophone station depth and plot a hodogram of the particle motion before
rotation and after. The other evidence comes later when we plot all the horizontal data and look for any abrupt
changes in the direct arrival waveform which would suggest a possible rotation error.

The former is done with the Octave program, hodoplot.m (see 6.7.4). Start an Octave session and execute from
within the Octave text window the following command (segyinfo.m, bsegin.m must also be in the path)

hodoplot;

The Octave session must be started in the same directory as the data to be plotted, and of course, a copy or link
to hodoplot.m would also be in that directory. A number of obvious dialog GUI’s come up, most of which can be
defaulted. The two that are important are the selection of which trace to plot on which axis, and the time window
selection. The standard BSU orientation is to have the down-hole components on channels 1,2, and 3 (V-comp,
R-comp, T-comp). In that case, one select channel 2 for the x-axis, and channel 3 for the y-axis. The default time
window GUI shows 0 to tmax seconds. One benefits from looking only at the direct arrival, and can step through
the motion by progressively increasing the maximum time (the program loops until you click on cancel). For this
example, the max times to plot were chosen as follows:

• 0 to .065 sec

• .065 to .070 sec

• .070 to .075 sec

• .075 to .078 sec

Figure 15 shows the result of plotting the data, first as recorded (A),and then a second time with the rotated
data set (B).

6 USING BSU 80

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Radial

T
ra

n
s
v
e
rs

e

0.0

65.0 ms65.0

70.0 ms70.0

75.0 ms75.0

78.0 ms

Scale Factor:7.74e+00 millivolts

Shot (100.00,101.27,0.00) Rec. (100.00,100.00,−10.22)

L065.seg Offset=10.304

Hodogram: Data as recorded(A)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Radial
T

ra
n
s
v
e
rs

e

0.0

65.0 ms65.0

70.0 ms70.0

75.0 ms75.0

78.0 ms

Scale Factor:8.34e+00 millivolts

Shot (100.00,101.27,0.00) Rec. (100.00,100.00,−10.22)

brotL065.seg Offset=10.304

(B) Hodogram: Data rotated to align with T−axis

Figure 15: Plots produced by hodoplot.m confirms that data were rotated as desired

6.7.10.3 Using hodo2plot.m to plot hodograms In the above example, 6.7.10.2, the channels to be plot-
ted were in the same file. An alternative Octave program, hodo2plot.m, is shipped with BSU to permit plotting
hodograms when the channels to be plotted are in different files. In section 6.7.9 above, the program bmrg was
used to collect all the channel 2 signals from all the different geophone depths. These were moved into a file,
bmrg0002.seg. The same was done for channel 3 signals, and the result moved to a file named bmrg0003.seg.
One could use program bdump to get a partial header listing and identify the trace whose geophone depth corre-
sponded to a depth of interest. Executing hodo2plot.m from within the Octave text window results in a number of
queries to the user. One specifies the two files and the trace number to plot as a hodogram (this would be the same
for both files and is specified only once). The other queries are the same as in section 6.7.10.2, except there is one
more query asking for how to label the two axes of the plot. This program, like hodoplot.m is useful for all multi-
component data, not just down-hole data. They permit one to examine particle motion from any multi-component
data, be they down-hole or surface.

6.7.11 Sorting and Merging to Common Receiver Component Gathers

What we would like to look at is not a multiplexed display of different components, but rather a gather of all
one type of component. For P-waves, our first choice would be to gather all the down-hole vertical component
data into a single file (trace #1 from all the files). For the SH-waves, we will want to gather all the down-hole
T-component data (trace #3 from all the files). Included in the BSU distribution is a bash script, Merge, which
produces some of these common component gathers. An alternative script is Merge-all (Appendix B) which
generates all combinations of sum or difference on all components. In addition to gathering a component, the
Merge script also computes wave field enhancements and wave shaping to remove source variations monitored by
the reference phone. Begin by copying the Merge script into your “brot” directory which contains the brot*.seg
files. NOTE: For vertical component sources (only one polarization) see script Merge2 (in the scripts directory and
Appendix C). Merge2 is designed for 7 component recording (load cell on hammer is 7th signal). This script can
also be modified for vertical impact sources without a load cell.

6 USING BSU 81

6.7.12 Edit Merge Script for the Specific Down-hole Survey

Since several survey details are likely to vary from one bore hole to the next, you must edit a few lines of the file,
Merge. These lines are near the top of the file and are reproduced below. The boxed values will need to be changed.

#set -x
#...define parameters YOU MUST DEFINE THESE FOR EACH NEW SURVEY
SINCE IT IS LIKELY THAT THE NUMBER OF RECORDS
WILL VARY WITH EACH SURVEY !!!!
odmin=01
odmax=163

evmin=02
evmax=164
PRFX=w

eklmax=(odmax-1)/2
eklmax=‘bc <<END
($odmax-1)/2
END‘
echo $eklmax
oklmax=eklmax+1
oklmax=‘bc <<END
($eklmax+1)

END‘
echo $oklmax
#shaping filter parameters (bshp)
tmin=0.
tmax=0.1
npf=360
stab=.0001
#polarity file definitions
az90=2
az270=1

The record numbers in the GeoLogan97 survey run from 1 through 146. The odd numbered records are 1, 3, 5,
. . .145. Thus, odmin=01 and odmax=145. You will have to edit Merge to change odmax from 163 to the current
value of 145. Similarly, the even numbered records run from 2, 3, 4, . . . 146. You will have to change evmax to
146. In the GeoLogan97 survey, the odd numbered records had a source azimuth of 90o and the even numbered
records a source azimuth of 270o. Thus, the variables az90 and az270 will have to be changed to match the current
survey. Set az90=1 and az270=2. These two values affect the order of subtraction between the two polarities of
the source, and hence the final sign convention of the enhanced data. Finally, the prefix for the GeoLogan97 data
is “L”, not “w”. Make the change so that PRFX=L. Depending on your views, you may also wish to modify the
shaping filter parameters (see program bshp). The shaping filter corrects for triggering variations and source blow
amplitude variations which might be mistaken for down-hole geologic effects, were it not for our monitoring of
the source with a stationary reference phone.

6.7.13 Description of the Merge Procedure.

When you run Merge, the following sequence is followed:

1. Determine the maximum absolute value on the reference phone vertical component (for the last even record).
This is done by first running bscl on the last even record (brotL146.seg in the example) and then scanning
the resulting listing for the amplitude. The bscl command is

bscl brot$PRFX $evmax.seg 4 1 3 1>/dev/null

6 USING BSU 82

and the capture of the amplitude from the listing is done by the command

AMP=` gawk ’/Peak Absolute Value/ {print $4}’ bsclbrot.lst`

2. A list of reduced file names is created with the file command. Thus, FILE=L001 L002 L003 . . L146 when
the following command is executed:

FILE=` find brot*seg | sed s/\.seg/”/g |sed s/brot/”/g`

3. The list in FILE is then directs a do loop which scales each brotL*.seg file first to unity maximum absolute
amplitude on the reference vertical component, followed by a rescaling that makes all the files in the list
end up having the same maximum absolute value on their respective vertical reference phone signals. This
single new value is of course the AMP value captured in step (1) above.

4. The newly formed scaled versions all have been scaled to the same peak signal on their vertical reference,
and this is dominated by the Near Field and Rayleigh waves. The goal is to null out the Rayleigh wave, and
focus on the body waves down-hole. At this point, a sequence of bmrg runs are made to collect common
receiver gathers. The files created are:
a) rfv1.seg and rfv2.seg [reference, Vertical for shot azimuths 270 and 90 degrees respectively]
b) rft1.seg and rft2.seg [reference, T-comp. for shot azimuths 270 and 90 degrees respectively]
c) swt1.seg and swt2.seg [down-hole, T-comp. for shot azimuths 270 and 90 degrees respectively]
d) swv1.seg and swv2.seg [down-hole, Vertical for shot azimuths 270 and 90 degrees respectively]

5. Enhancements without shaping filters are computed by subtracting the az270 files from the az90 files (SH-
wave enhancement), or summing the az270 and az90 files (P-wave enhancement). The resulting output files
are:
a) twav.seg [SH-wave enhanced, viewed on the T-component down-hole]
b) pwav.seg [P-wave enhanced, viewed on the Vertical component down-hole]

6. The shaping filter versions of enhanced P- and SH-waves is done by first running bshp on the reference
phone traces, matching each reference to a target waveform, and then applying the filters on a second pass
to the down-hole data. Thus, filter design is on the reference phone data, application is to both the reference
phone (for QC) and to the down-hole (removes source fluctuations from down-hole data). The resulting file
comparable to step (5) are:
a) twave.seg [SH-wave enhanced, viewed on the T-component down-hole]
b) pwave.seg [P-wave enhanced, viewed on the Vertical component down-hole]
Note: The only difference in the names is the extra letter “e”.

In summary, the files twav.seg and pwav.seg are enhanced SH- and P-waves, without any shaping filters. The files
twave.seg and pwave.seg have the additional Wiener Least Squares shaping based on observations of the reference
phone.

6.7.14 Plotting the Results from Merge

Initial plots are produced by a call to bplt in Merge. This program can output a variety of formats, including the
*.jpg image format in the current script. The *.jpg files can be viewed using a program like display which comes
with the ImageMagick package on most Linux distributions. The Merge script uses the jpg option for a quick QC.
The program bplt is new with this release of BSU, and has many more options, to be discussed later. The scripts,
xplot and psplot give some additional examples.

Alternatively, one can also use Seismic Unix (SU) to plot the results. The BSU distribution includes some
scripts, xPlot-su and psPlot-su, which call SU programs for plotting in an X-window or as a Postscript file. Figure
16 illustrates how plots made with psPlot can be combined in xfig with the results of a direct push survey by
ConeTec. The ConeTec survey was done in preparation for the field day event.

The twave.seg file has been trace equalized by the program bequ. If each trace were not individually scaled, the
large variation in amplitude would result in the deep data disappearing below the visible threshold. The SH-wave

6 USING BSU 83

0 0.05 0.10 0.15
 Time (s)

-15

-10

-5

E
le

v
a

ti
o

n
 (

m
)

GeoLogan97 SH-Wave T-component: bequtwav.seg

Clays

and

Silts

Sand

SBT

CPT−3
ConeTec

30

25

20

15

5

10

0

Silt

Sandy
Silt

Gravel
REFUSAL

E
le

v
at

io
n

 (
m

et
er

s)

−

−

−

−

−

−

Seismic Survey 15 July 1997, short distance from CPT−3

CPT−3 Survey by ConeTec GeoLogan97 Field Day

Water table not known (borehole sealed at bottom)

Figure 16: Difference of Source Polarizations, T-Component (bequ applied to twav.seg)

arrives just before the 0.1 second timing line at the bottom of the survey. A faint, unidentified wave arrives at about
.05 seconds (between what may be the P- and SH-waves).

Figure 17 shows the pwav.seg file, also processed by bequ. In this case, the scaling was based on the data from
0 to .025 seconds. What may be the P-wave arrives at about .02 seconds at the bottom of the survey. The file named
pwav.seg is in fact the sum of the two source polarizations, vertical component. This process will also enhance
Rayleigh and Near Field waves, so one should be cautious in identifying candidate P-waves. The shallower the
depth, the more uncertain the wave field identification due to a superposition of different motions.

The plotting script which generated these figures, psPlot, makes use of the Seismic Unix program, segyclean,
to prepare the headers before piping it to supswigp which does the actual plotting.

6.8 Down-hole Seismic Analysis
6.8.1 Picking First Arrivals

BSU is distributed with a Octave procedure, segpic.m, which can be used to pick first arrivals. Copy the procedure
into your working directory that has the files you wish to pick. Start Octave, and then run the procedure from
within the Octave text window

segpic;
The procedure will prompt you for a file name and a maximum time to display. For example, you might answer

twave.seg for the file, and .20 for the maximum time to pick the first arrival SH-waves. Then, a graphic window
will be displayed showing the first trace. Position your mouse at the point where you feel the first arrival is, and
click with your left mouse button. Only the lateral position is read from the mouse click, so you don’t have to
be concerned about the vertical placement of the mouse, other than it be somewhere inside the plot window. The
procedure moves on to the next trace after the click. This is a rather simple routine, and you can’t go backwards.
After all the traces have been picked, the procedure writes the picks to a file, (trace #, pick time) pairs.

The picks can be written to the file trace headers by running bpic in your X-term window. For demonstration,
the I have picked file twave.seg, and in the interest of better signal to noise, picked not the first motion, but the zero

6 USING BSU 84

0 0.02 0.04
 Time (s)

-15

-10

-5

E
le

v
a

ti
o

n
 (

m
)

GeoLogan97 P-Wave V-component: bequpwav.seg

Clays

and

Silts

Sand

SBT

CPT−3
ConeTec

30

25

20

15

5

10

0

Silt

Sandy
Silt

Gravel
REFUSAL

E
le

v
at

io
n

 (
m

et
er

s)

−

−

−

−

−

−

Seismic Survey 15 July 1997, short distance from CPT−3

CPT−3 Survey by ConeTec GeoLogan97 Field Day

Water table not known (borehole sealed at bottom)

Figure 17: Sum of Source Polarizations, V-Component (bequ applied to pwav.seg)

crossing from the first peak to trough of the first arrival SH-wave. This occurs about .005 seconds after the first
motion. The picks are inserted into headers with the command,

bpic twave.seg 1 twave.pic -.005

The last argument, -.005, shifts the value in the twave.pic file to a point earlier in time, where the first motion
is located. The output file is called, bpictwav.seg. You can then move this to replace the original file, twave.seg,
thus completing the operation. Now twave.seg will have the picks in the headers.

6.8.1.1 Quality control of picks The easy way to QC picks is to align the data on a constant time line using
the picks in the headers for static shifts. The program, bshf, will do this. For example, type the command

bshf twave.seg 0 1 .02

This will align the data on the .02 second timing line by applying static shifts equal to the negative of the pick
value. Figure 18 shows this process (picking, insertion to headers, and alignment in time for QC) at the final
alignment step. If a pick were bad, it would be evident by a misalignment of the corresponding trace, relative to its
neighbors. In Figure 18, all the picks look good.

It is evident that the propagating wavelet is changing shape (first motion peak stretches in time with increas-
ing distance from the source). Such wavelet stretch may be interpreted as inelastic wave propagation, perhaps
consistent with a viscoelastic, Kelvin-Voigt, constitutive model. Despite the expected velocity dispersion, one can
determine a group velocity for the frequencies which dominate the amplitude spectrum of the signal.

6 USING BSU 85

0 0.02 0.04 0.06 0.08 0.10
 Time (s)

-15

-10

-5

E
le

v
a

ti
o

n
 (

m
)

GeoLogan97 T-component shifted by Picks: bequbshf.seg

alignment time

Figure 18: Alignment T-component data by first break picks for QC

6.8.2 Vertical Time and Observed Travel Time Inversion (vfitw.m, vplot.m, bvsp)

The BSU distribution includes a procedure, vfitw.m, which reads the picks in the trace headers of a BSEGY data
set. The procedure projects the picks to the vertical, and prompts the user to select the top and bottom of an interval
for a least squares linear fit. The fit curve is drawn and the user clicks at a point where the interval velocity solution
will be printed (on the figure). This velocity is an estimate of the vertical group propagation velocity. If the results
of vfitw.m are written to disk, a second program, vplot.m, may be used to plot the solutions with more user control
over scales. Exporting the plot to xfig format will allow one to draft on the final figure.

Figure (19A) is the vplot.m generated plot of a two interval analysis of the T-component data. A significant
increase in group velocity occurs at the transition from silt-clay soil to the sand (soil types determined by Soil
Behavior Type (SBT) of the ConeTec survey made available at GeoLogan97). An alternative to working with
vertical times is program bvsp which does an inversion based on 2 layers over a half-space. Bvsp works with
the observed times, and solves for refracted and direct raypaths in a non-linear ray tracing scheme (horizontal
boundaries). The bvsp result is shown in Figure (19B) (after 40 iterations). Program bvsp fits the observed arrival
times by ray tracing, and is hardwired to do a 3 layer fit.

0 0.02 0.04 0.06 0.08 0.1
−20

−15

−10

−5

0

Vertical Time (s)

M
e

te
rs

156 (+/−3m/s)

235 (+/−2m/s)

Geologan 1997 SH

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
e

p
th

Time (s)

(B) BVSP Solution

4.4 m

3.0 m

156.4 m/s

144.3 m/s

231.8 m/s

GeoLogan 1997 40 Iterations 1<Z<20 meters LSQE= +/− .00054sec

(A) vfitw.m Solution

Figure 19: T-component Data Travel Time Inversions (a) Vertical Time (b) Observed Time

6 USING BSU 86

It should be remembered that the ConeTec and seismic survey were done at different times of year (ConeTec in
November 1996, seismic in July 1997). Further, the two surveys were in the same general area, but not at exactly
the same location. The lateral separation of the two could easily be 50 meters or more. For that reason, exact depth
correlations are not possible.

6.8.3 Determination of Stiffness and Damping

The programs bvas and bamp are used to measure the velocity dispersion and amplitude decay as a function of
frequency. These measurements are inverted for material stiffness and damping by Octave procedure cainv3.m
according to a method described by Michaels [10]. The constitutive model is often referred to as the Kelvin-Voigt
solid.

6.8.3.1 Governing Differential Equation The PDE relevant to 1-D wave propagation is given by

∂ 2u
∂ t2 =C1

∂ 2u
∂x2 +C2

∂ 3u
∂ t∂x2 (1)

where “u” is particle displacement, “t” is time, “x” is the coordinate in the direction of wave propagation, C1is the
stiffness

(
m2

s2

)
, and C2 is the damping

(
m2

s

)
. Equation (1) reduces to the elastic wave equation when the damping

value, C2 = 0. In that case, the phase velocity is constant for all frequencies, and the wave does not experience any
decay (for a 1-D plane wave). In the elastic case, the phase velocity will be

√
C1 .

In the more general case, C2 6= 0, and there will be both velocity dispersion and exponential, inelastic amplitude
decay. A solution of equation (1) is

u(x, t) = exp(−αx) · cos(βx−ωt) ,

where the wavenumber is complex and given by β + iα .
Michaels [10] shows that the inelastic decay of a plane wave will be given by

α =
4
√

Dω2C2

(2ωC2)
2 +D2

where ω is angular frequency (rad/s) and the quantity, D, is given by

D = 2
(

C1 +
√

C2
1 +ω2C2

2

)
. (2)

The phase velocity, c, varies with frequency according to the following relationship

c =
2ω2C2

Dα
. (3)

The values for C1 and C2 can be expressed in terms of the following :

C1 =

(
β 2−α2

)
ω2

(β 2 +α2)2 , (4)

and

C2 =
2αβω

(β 2 +α2)2 . (5)

Determination of C1 and C2 is by nonlinear joint inversion of the phase velocity, c, and inelastic decay, α , over
a range of frequencies. The inversion is currently performed in the Octave procedure, cainv3.m. Initial estimates
of stiffness and damping are obtained at the frequency corresponding to the largest α measured by bamp. First, C1
is found by evaluation of equation (4). In that computation, β = ω

c . Then, C2 is estimated from equation (5).

6 USING BSU 87

6.8.3.2 Measurement of Velocity Dispersion (bvas) The program, bvas, measures phase velocity as a function
of frequency for a given subsurface interval. The user specifies an interval in the subsurface by the top and bottom
elevation. The data are filtered by very narrow band-pass filters. At each frequency, the data are shifted by a
sequence of trial velocities (from Vmin to Vmax). For each trial alignment, a semblance value (Sheriff [21]) is
calculated which measures the degree to which the data were aligned. The larger the semblance, the better the
alignment. A Golden Section search solves for the best alignment velocity in the bracketed interval. The solution
is written to a file, bvas.his, which is later read by the Octave procedure, cainv3.m.

Postscript plots bvasqc.ps generated by bvas. This is a multi-page file, one page for each frequency, which
shows the quality of the trace alignment for the velocity solution. All the traces in the analysis interval are shifted
into alignment at the solution velocity. A reference trace is taken as the first trace in the interval of analysis. A
relative time shift is computed from the angle between each trace and the reference trace. That is, if the reference
trace is U, and another trace is S, then the angle between S and the reference trace, U, is given by

θ = arccos

 ∑(UiSi)√
∑U2

i

√
∑S2

i

 , (6)

and the relative time shift at that frequency is given by

ts =
θ

ω
. (7)

This relative time shift is plotted about a horizontal line, the mean time shift for all the traces in the interval. The
error bar for the velocity analysis is derived from the scatter about this line. A good quality solution is evident
when the mean scatter is close to zero, and the points are tightly clustered about the line. A large mean, and large
scatter indicate a poor quality solution. One should also examine the nature of the scatter. If it is random, then the
interval is probably well chosen. However, if there appears to be two or more linear trends in the points, then one
may wish to re-evaluate the choice of interval, as it may include more than one soil type. Figure 20 shows a typical
QC plot with ts plotted against geophone elevation (analysis interval was -13 to -8 meters elevation).

Figure 20: Velocity analysis QC plot from file bvasqc.ps

Postscript plot bvas.ps generated by bvas. A summary, single page, plot of velocity and semblance as a
function of frequency is given by bvas.ps. In general, there will be a sensible agreement between high semblance
values, small error bars, and good quality for that frequency in the corresponding bvasqc.ps plot. Zones with poor
signal will have low semblance values, as will also be the case if the interval of analysis is too large for a single
velocity solution (ie. an analysis zone with more than one soil velocity). Figure 21 shows a typical bvas.ps plot.

Computing error bars for velocity. The computation of error bars is based on the scatter of the points
plotted in the bvasqc.ps file. Consider an alternative X-Y plot of points about a linear trend, where the “x” values

6 USING BSU 88

Figure 21: Summary plot showing velocity and semblance.

are the depths, zi , of each geophone station, and the “y” values are pseudo arrival times computed from the bvas
solution velocity and relative time shifts, ts , about the mean shift, t ,

yi =
zi

V
+(ts− t) . (8)

The slope of a least squares linear fit to these pseudo times, yi , would correspond to the slowness, 1/V. The problem
is to then estimate the variance in the reciprocal of the slope of linear solution. That is, if y = mx+ b , then we
solve for the variance, σ2

1/m , assuming a least squares solution to the problem. For N pairs of (x,y), we can write
the velocity as the reciprocal of the least squares solution for the slope of the line as

V =
1
m

=

[
(∑xi)

2−N ∑
(
x2

i
)]

[(∑xi)(∑yi)−N ∑(xiyi)]
. (9)

The variance of the velocity, σ2
V = σ2

1
m

, is given by

σ
2
V = σ

2
1
m
= ∑

(
∂V
∂yi

)2

σ
2
yi
, (10)

where σ2
y is assumed a constant for all yi and is estimated by the scatter around the mean ts . In other words, σ2

y is
given by

σ
2
y = σ

2
ts =

∑(ts− t)2

N−1
. (11)

After some algebra, we find that,

σ
2
V = σ

2
1
m
= σ

2
ts ·

N
[
N ∑

(
x2

i
)
− (∑xi)

2
]3

[(∑xi)(∑yi)−N ∑(xiyi)]
4 . (12)

This permits us to treat the semblance determined velocity, V, as though it were the result of a least squares fit
to picked arrival times, and thus obtain an estimate of the uncertainty in the phase velocity determination. The

6 USING BSU 89

velocity error bars are computed as the square root of σ2
V (units of m/s). These error bars may be scaled by 1.96 to

obtain an estimate of the 95% confidence interval (assuming normally distributed errors). The unscaled values are
output to the file bvas.his, and then later used in the Octave joint inversion, cainv3.m, to obtain confidence limits
on both stiffness, C1 and damping, C2 .

6.8.3.3 Measurement of Inelastic Amplitude Decay (bamp) Because there will be some beam divergence
from any real, finite source, the program, bamp, makes a correction for beam divergence before measuring inelastic
decay. Currently, the only option is for a spherical divergence correction. Under this model, the amplitude, A, of a
spherically divergent wave at distance, r, from the source is given by

A =

(
Aoro

r

)
· exp(−α (r− ro)) , (13)

where Ao is the amplitude at a reference offset ro . Here, amplitude is the particle velocity as measured by a moving
coil velocity phone (dynamic stress/impedance). The decay at any frequency may be expressed in terms of α (1/m,
also sometimes referred to as nepers/m). Alternatively, decay may be expressed in decibels as

dB = 20log10

(
Ar

Aoro

)
=−20(log10 e)α(r− ro). (14)

Program, bamp, writes the measured inelastic decay, α , at each frequency and writes the results to a file, bamp.his,
which is later read by cainv3.m.

Postscript plots bampqc.ps generated by bamp. The program, bamp, measures amplitude decay as a
function of frequency for a given subsurface interval. The user specifies an interval in the subsurface by the top
and bottom elevation. The data are filtered by very narrow band-pass filters. A reference offset is computed from
the distance between the source and shallowest geophone station (typically closest to the source) which still lies
within the subsurface interval of interest. A peak amplitude and range is calculated for each trace in the interval,
and then a decibel value is computed according to equation (14). A least squares linear solution of the form,
y = mx+ b is performed, where “x” is the range beyond the reference, (r− ro) , and “y” is the decibel value for
that particular range. The slope, “m”, is in units of dB/meter, and can also be converted to α in units of 1/m. Figure
22 shows a typical bampqc.ps plot page.

Figure 22: Amplitude decay analysis QC plot from file bampqc.ps

This plot serves the same role as those from bvasqc.ps discussed above. Random scatter about the trend are
a measure of the uncertainty in the decay value, and the steepness of the slope is a visual representation of the
decay. The slope should always dip down to the right (with increasing offset). To do otherwise would suggest an
increase in amplitude with propagation, and be counter to the data model. When the slope is zero or dips upward,
the inconsistency may be due to a combination of several factors. These include but are not limited to:

a). constructive interference from reflected or diffracted waves at certain frequencies
b). beam divergence which is not spherical
c). an interval which spans more than one soil type

6 USING BSU 90

d). poor coupling at certain frequencies, and possibly voids behind the casing
The output file, bamp.his, will have zeros inserted for decay values which are of the wrong sign. That is, according
to the formulation shown in equation (13), α should never be negative.

Postscript plot bamp.ps generated from bamp. A summary plot of all the decay determinations as a function
of frequency is provided in file bamp.ps. In general, there will be a sensible agreement between small error bars
and good quality for that frequency in the corresponding bampqc.ps plot. Figure 23 shows an example of the
bamp.ps plot.

Figure 23: Summary plot showing decay as a function of frequency

Computing error bars for decay. The decay error bars are based on the scatter of the points about the least
squares fit plotted in the bampqc.ps file. The variance in decay is computed from the deviations about the line. In
general, for any least squares solution of the form y = mx+b , the slope, m, is given by,

m =
(∑xi)(∑yi)−N ∑(xiyi)

(∑xi)
2−N ∑

(
x2

i

) . (15)

Here, N is the number of (x,y) pairs. We can estimate the variance in y from

σ
2
y =

∑(yi− (mxi +b))2

N−1
. (16)

The variance in the slope, m, follows from the equation used to compute m, equation(15), and the variance in the
y values (which will be taken to be a constant given by equation(16)). For uncorrelated errors, the variance in the
slope is given by

σ
2
m = ∑

(
∂m
∂yi

)2

σ
2
yi
, (17)

which reduces to the following

σ
2
m =

Nσ2
y[

N ∑
(
x2

i

)
− (∑xi)

2
] . (18)

The slope, m, for our problem is of course the decay factor (dB/m). Conversion to 1/m units follows by dividing
by 8.68589 in the usual way.

6.8.3.4 Recording Aperture and the Selection of Filter Bandwidth for bvas and bamp As one might expect,
there is a limit to how finely the spectrum may be investigated. This depends on the available aperture, which
follows from the choice the user made in recording the field data. If there are N samples in each seismic trace, and
if the sample interval is ∆t , then the filter bandwidth should not be less than 1

N∆t . Further, the frequency step size

6 USING BSU 91

(independent of the bandwidth specification) should be no smaller than the bandwidth. Both programs, bvas and
bamp, should be run with the same spectral bandwidth. However, the program cainv3.m is able to handle different
total numbers of amplitude and velocity samples in the frequency domain. Thus, it is OK to be missing either
some decay or velocity samples. Further, the sampled frequencies do not have to be identical for both velocity and
decay. What should be the same is the bandwidth of the filters.

It is important to record enough data (large enough aperture), if the velocity measurements are to be considered
phase velocity, and not group velocity. With hammer sources on soil, I recommend recording no less than 0.5
seconds of data (translates to a bandwidth of 2 Hz).

6.8.3.5 Inversion for Stiffness and Damping (cainv3.m) Programs bvas and bamp store their results in bvas.his
and bamp.his. The Octave procedure, cainv3.m, reads these files and performs the joint inversion for soil stiffness
and damping. The procedure, caplot3.m is available to produce journal quality plots of the inversion solution. The
Octave procedures should be copied to the same directory where *.his files are located. Each depth interval will
require a separate set of *.his files, and a separate cainv3.m run.

Start Octave, and then from the Octave text window, type the command

cainv3

Using a GUI interface, cainv3.m will prompt you as follows:

DIALOG WITH CAINV3.m

1. Input Files Hardwired. The program expects the input files to have been generated by programs bvas and
bamp (bvas.his and bamp.his)).

2. Use mouse to pick min and max frequencies. Click OK, then in the graphic display, move mouse to
velocity panel and click with left mouse button on the lowest frequency desired. Then move the mouse to
the highest frequency desired and click again.

3. Select initial C1, C2 and number of iterations. The default is computed from equations (4) and (5). This
is usually a good choice. But you can enter different values if you wish. The maximum number of iterations
is set to 10, and that is usually enough. See item (7) below.

4. Choose Weighting. Choose one of 3 options. The weighting reduces the influence of data points which
have large uncertainties. One can weight by the reciprocal of the variance or the square root of the variance
estimate (stdv). If you want all data points to have an equal influence on the solution, regardless of the
associated measurement uncertainties, select the no weighting option.

5. Set Block Weighing: Velocity to Decay. This is a joint inversion which includes both velocity dispersion
and decay measurements. A value near 1 will emphasize the velocity data, and largely ignore the decay
information. A small value will emphasize the decay data, and discount the velocity information. Usually,
one should refrain from extremes here (don’t use 1 or 0), but stay in the range of 0.9 to 0.1 for useful results.
This weighting is superimposed on a data type weighting (the least squares error has to be scaled to take into
account the different data units). If unsure, use the default, 0.5, for generally equal weighting of velocity and
decay.

6. Continue to LSQE Plot. The procedure halts to let you view the last iteration results. When ready to
move on, click on the YES button.

7. Continue to Chi Square Plot. View the weighted least squares error (this is a scaled combination error
of both data types). It should decrease with iteration number, and give you an evaluation of the number of
iterations needed. When ready to move on, click on the YES button.

8. Save Results to Disk. Chi-Square plots for velocity and decay are shown. These are based on average
estimates of the data uncertainties as expressed in the average error bars. It gives you an idea of the relative
balance between the residual error and the data uncertainty. In general, there is no point in obtaining a
solution with Chi-square less than unity. More iterations may help if Chi-square is above unity, and can be

6 USING BSU 92

further reduced. However, if one only focuses on one data type, the other will suffer. See Menke [7] for
more. When ready to move on, click on the YES button. The program ends displaying the relaxation time
for the solution, Tr =

C2
C1

6.8.4 Plotting Inversion Results (caplot3.m)

While the graphics produced during a cainv3.m run are informative, you may wish to produce cleaner plots for a
publication or document. Further, you may wish to draft on the figures using xfig. A number of files are written by
cainv3.m which capture the solution and data from the inversion. These files are, casol.dat, caoutc.dat, caouta.dat,
calsqe.dat, cadeld.dat, and cachi2.dat. These files are automatically read by caplot3.m for a user specified plotting
of the results.

From the Octave text window, type the command

caplot3

Using a GUI interface, caplot3.m will prompt you as follows:

DIALOG WITH CAPLOT3.m

1. Show Grid on Plots Click on Yes or No for final plots.

2. Edit Axes Limits Either use defaults (and click OK), or use entry boxes to set new values.

3. Select range of observations to plot. During the inversion, you selected a subset of the frequencies that
could be inverted. Do you want your final plot to show all the data, or just the range of frequencies you
selected in the inversion?

4. Continue on to Decay Plot? Click YES to continue.

5. Set horizontal and vertical axis limits for Decay Plot. The defaults are for everything. However, you may
want to focus on a portion of the data. The procedure will automatically write an xfig file, aplot.fig. Edit
limits in the GUI and click OK.

6. Continue to Chi-Square Plot? Click YES to continue.

7. Select axes limits. Defaults are usually OK. Click OK when ready to continue.

6.8.4.1 Post caplot3.m processing. At the conclusion of plotting, you may wish to export plots in XFIG format.
You may want to edit the plot files in xfig. You may wish to add further annotations or edit fonts. You can also
merge two plots together, and even rescale the combination. Once you have it looking the way you wish, export
the plot to a Postscript or PDF file for plotting or inclusion in a document. An example with both velocity and
decay merged together is shown in Figure 24.

6 USING BSU 93

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 Frequency (Hz)

A
tt

e
n

u
a

ti
o

n
 (

1
/m

)

Attenuation RelaxTime=0.002408 (+/−)0.000164 sec.

0 10 20 30 40 50
0

100

200

300

400

500

600

700

 Frequency (Hz)

V
e

lo
c
it
y
 (

m
/s

)

Velocity C1=228738 (+/−)7380 C2=551 (+/−)33 95% Conf. No error weighting Balance=0.50

Figure 24: Merged figure showing both velocity and decay

6.8.4.2 Kelvin-Voigt Modeling with cafwd3.m Program cafwd3.m is a Octave program which permits one
to compute the velocity dispersion and amplitude decay as a function of frequency. Given user supplied values
for stiffness (C1 in m2/s2) and damping (C2 in m2/s), the program computes frequency dependent phase velocity
dispersion (m/s) and decay (1/m). A second plot re-expresses the amplitude decay as a quality factor, Q. This is
computed by (Toksöz [23])

Q =
π f
αV

(19)

where α is the decay in units of 1/m, f is frequency, and V is velocity at that frequency. There are two ways to use
the program.

• Without data. The first GUI switches the code to do a forward computation only.

• With data. The first GUI switches the code to compare the forward calculations with data from a previous
cainv3.m run. This requires that files bvas.his and bamp.his be in the same directory as the initiation of the
Octave session.

To run the program, start a Octave session. Then, inside the interactive Octave text window, type:

cafwd3

With the first GUI, choose if data are to be included in the plot. If data are included, you will be prompted to
use the mouse to select a frequency range to model. For the non data case, the frequency range is hardwired, and
can be changed if needed by editing the program (look for fmin and fmax variables at the top). The program will
do an initial case on its own. If there are data, it will look at the data and make a reasonable first guess. If there are
no data, a default GUI will come up. One can then change the values for stiffness and damping and recalculate a
new set of plots. Figure 25 shows examples of the two ways dispersion can be presented (ie. with or without data
plots). One can keep revising the values and clicking OK as much as one wants. When done, click the “cancel”
button. An example of the second Q-plot is shown in Figure 26. This corresponds to the run shown in Figure 25A.
Note that the example values for C1 and C2 are different for the no data and with data cases.

6 USING BSU 94

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

1

2

3

4

Frequency Hz

 (
1

/m
)

Velocity Relaxation Time=2.500 ms C1=10000.000000 C2=25.000000

Attenuation

0 10 20 30 40
0

100

200

300

400

500

600

0 10 20 30 40
0

0.05

0.1

0.15

Frequency Hz

 (
1

/m
)

Attenuation

Velocity Relaxation Time=2.206 ms C1=238000.000000 C2=525.000000 Lsqe=3.321e+00

(A) (B)

Figure 25: Sample of cafwd3 calculations. (A) run without data (B) run with data for comparison

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200

1

2

3

4

5

6

Frequency Hz

u
n

it
le

s
s

Velocity Relaxation Time=2.500 ms C1=10000.000000 C2=25.000000

Quality Factor, Q

0 10 20 30 40
0

100

200

300

400

500

0 10 20 30 40

2

4

6

8

10

12

14

Frequency Hz

u
n

it
le

s
s

Quality Factor, Q

Velocity Relaxation Time=2.206 ms C1=238000.000000 C2=525.000000 Lsqe=3.321e+00

(A) (B)

Figure 26: Sample of cafwd3 calculations. Quality factor varies with frequency.

6 USING BSU 95

6.9 Seismic Refraction Processing
The BSU package includes some software for the refraction delay time method. This software is suitable for a
simple problem like mapping the depth to bedrock with a soil overburden. Engineering applications include slope
stability analysis, assessment for the need to blast or excavate in construction, and mapping the extent of a soil
deposit (like a gravel barrow). There are no assumptions about the recording surface, or the layout of the geophones
and shots. The ground topography can be irregular, and geophones do not always need to be deployed in a line.
The seismic source can be buried, or on the surface of the ground.

This section will be illustrated with a data sample recorded along a highway where the issue was slope stability
(Michaels [11]). The Idaho Transportation Department was considering adding a passing lane, and the amount of
overburden in the up dip direction was of concern. The sample file may be downloaded from the BSU Database
web page.
Go to https://173.255.241.228/BSU/. Click on the check boxes for 1995, Idaho, and then on submit. It will list 3
download archives. ID-102.zip is the raw bison files and SEGY with some scripts.

6.9.1 Converting from SEGY to BSEGY Format

This first example is for a conventional reverse profile line shot along the road shoulder. It is used to determine
the refractor velocity, overburden velocity, and delay times at locations needed later for the line which runs up the
steep slope. Assuming you have downloaded the ID-102 archive and unpacked it in a convenient location, you
will note that it has the following directory structure:

ID-102
|--- bison
| |--- basemaps
|--- seg
| |---shoulderLine
|--- | |--- directWave
|--- | ‘--- headWave
|--- ‘---slopeLine
‘--- sgy

Change to the sgy directory. These are in the data exchange format defined by the Society of Exploration
Geophyicists, SEGY (Barry et al. [2]). The data format includes a reel header which goes back to the days of
digital tape. It has been adapted for disk use here. The BSEGY used by BSU differs in that it does not retain the
reel header, and there are some special uses for the optional headers (see section 6.1 for more). Convert these files
to BSEGY with a command sequence as follows:

bcnv k004.sgy 0 1 1
mv bcnvk004.seg k004.seg

The move “mv” command renames bcnvk004.segwith k004.seg. Repeat this for files k008.sgy and k009.sgy.
Then move the BSEGY data files to the “shoulderLine” directory,

mv k0*.seg ../seg/shoulderLine

The files are as follows:

• k004.seg is a hammer source recording with the blow near the middle of the line. It will be used with the
other two files to establish an overburden velocity.

• k008.seg is an explosive source line, shot near geophone station 1.

• k009.seg is an explosive source line, shot near geophone station 48.

6.9.1.1 Creating a Base Map from BSEGY Headers Since the shot and receiver locations are in the BSEGY
headers, we can use program bcad to build a basemap by extracting this information and generating a CAD data
exchange format file, *.dxf. For example,

https://173.255.241.228/BSU/

6 USING BSU 96

bcad k008.seg 1 1 2.0

creates file bcadk008.dxf. It is a simple “point” file with 2.0 meter labels. All three recording files use the same
geophone stations in this example, so the only difference in running bcad on the 3 files will be the source location. If
you download the open source program, dxf2fig, you can convert the *.dxf files to xfig format files. These can then
be edited in xfig to build a base map. I downloaded dxf2fig from http://homepage.usask.ca/ ijm451/fig/. (version
2.13). There are other versions at other websites, use a search engine if the location changes after this writing. I
have included an edited version based on the two files k008.seg and k009.seg. the map is shown in Figure 27.
Alternatively, I recommend Qcad to work with *.dxf files directly. Qcad is available from https://qcad.org/en/.

0 50 100
meters

9048

45

48

40

35

30

25

20

15

10

5

1 Shot 8001 recorded on k008.seg

Shot 9048 recorded on k009.seg

8001

N

Figure 27: Base map for refraction survey along road shoulder.

6.9.2 Using refplot.m for first look

The data were picked for first arrivals, and these picks are already in the headers along with the source and receiver
geometry. Other sections of this document describe how that is done (see section 6.8.1). We can start by using
program refplot2.m to examine the picks and get an idea of velocities, offsets, and a preliminary sense of the data.
The program offers two ways to view the data, by offset and by geophone station. Here, we will use the geophone
station view. Least squares solutions still use actual distance headers, regardless of our choice here. Begin by
starting a Octave session and type the following in the Octave text window:

refplot

You will enter a file name, k008.seg, for example. Next, choose “Stations” for the type of display. I use xfig for
the scaling, and make sensible choices for axes limits. When the data appear in a plot, choose DO AN INTERVAL
and then use the mouse to click on a starting and ending point for a linear (by offset) fit. One more click positions
the computed velocity for the line segment solution. Since we chose Stations rather than Offset, a linear fit by
offset may produce a somewhat undulating plot on a Station‘ display. The default is to use the “vp” label which
is not in meters. Also, the line is not straight, and the ground is not flat. The least squares fit uses actual header
distances to compute velocities and calculated times. Figure 28 shows what it should look like for a simple single
fit for all the stations.

Clearly, we seem to be seeing the granitic bedrock with these high refractor velocities. If we look at the
waveforms for the data (see Figure 29) we can form a view about the minimum offset needed for the granitic
refraction to arrive before a direct arrival. I picked an offset of 30 meters for this cross-over distance.

http://homepage.usask.ca/~ijm451/fig/
https://qcad.org/en/

6 USING BSU 97

0 10 20 30 40 50
0

20

40

60

80

100

Station Number

A
rr

iv
a

l
T

im
e

 (
m

s
)

3554 (+/− 41) m/s To=14.5 (+/−0.5) ms

File: k008.seg Shot Point: 8001

0 10 20 30 40 50
10

20

30

40

50

60

70

80

Station Number

A
rr

iv
a

l
T

im
e

 (
m

s
)

File: k009.seg Shot Point: 9048

3495 (+/− 53) m/s To=14.4 (+/−0.7) ms

Figure 28: Plots generated with refplot.m.

6.9.3 Direct Wave Method

Before we analyze refractions, we can examine the direct wave to determine the overburden velocity. The program,
direct.m packaged with BSU uses the least squares method to simultaneously solve for an overburden velocity using
several shot records and arrival time picks on near offsets (less than 30 meters in our data). Figure 30 shows the
general setup in a simplified case. Only data from near the shots are used. The basic travel time equation for the
direct wave between shot A and geophone 1 is

Xa1 �
1

V1
= ta1 (20)

where Xa1 is the distance between the shot A and geophone 1. The overburden velocity is given by V1 and the
observed first arrival time is ta1.

We set up a matrix problem in the form

G �m = d (21)

which expands to
Xa1
Xa2
Xb8
Xb9

 �[1
V1

]
=

ta1
ta2
tb8
tb9

 (22)

6 USING BSU 98

0 010 1020 2030 3040 40
0 0

50 50

100 100

150 150

Trace Number [amp=4.000 percnt=200 bequk008.seg] Trace Number [amp=4.000 percnt=200 bequk009.seg]

T
im

e
 (

m
s
)

T
im

e
 (

m
s
)

about 30mabout 30m

k008.seg k009.seg

Figure 29: Choosing an estimate of the cross-over distance at 30 meters.

geophone 1

geophone 2

Shot A

Shot B

geophone 9
geophone 8

overburden

V1

Figure 30: Direct wave raypaths used by program direct.m

The ordinary least squares (OLS) solution is given by (Menke [7]

m =
[
GT G

]−1
GT �d (23)

It follows that the overburden velocity determination is V1 =
1
m .

6.9.4 Determination of Overburden Velocity

A Octave program, direct.m is included with BSU for this purpose. Having established 30 meters for the cross-over
distance, we can run bref using the direct arrival option. We issue the command,

bref 0001 3 0 30 1 0 k004.seg k008.seg k009.seg

which uses 3 shots (the hammer and 2 explosives) to generate the required matrices and vectors. The command
restricts offsets to less than 30 meters. The files created are

• G0001 System matrix for direct arrivals

• D0001 Data vector with pick times

• E0001 Elevation and station vector for plotting

We start a Octave session, then execute the following command from within the Octave text window,

direct

The program prompts for the above 3 files, and then prompts for the number of shots (3 in this example). The

6 USING BSU 99

10 20 30 40
0

5

10

15

20

25

30

STATION

A
rr

iv
a

l
T

im
e

 (
m

s
e

c
)

Direct Wave: V1= 923 (+/−) 35 m/s

Figure 31: Solution for overburden velocity is 923 m/s based on k004.seg, k008.seg, and k009.seg.

program solves for the overburden velocity and generates a plot. Figure 31 shows the result. The title includes the
simultaneous solution for the direct wave velocity.

In the actual project, additional shots were available to obtain increased confidence in direct and refracted wave
solutions. The object here is too keep it simple for the reader to follow.

6.9.5 Delay Time Method

The basic theory can be found in many engineering seismology text books. The following is a brief summary of
how BSU implements the method. A highly simplified case is shown in Figure 32

REFRACTOR

GROUND LEVEL
Shot A

geophone 2

geophone 1
Shot B

geophone B

overburden

V1

granite bedrock
V2

Figure 32: Simplified delay time setup. Shots A and B shoot into geophones 1 and 2.

The delay time equation for Shot A to geophone 1 is given by

Ta +T1 +
Xa1

V2
= ta1 (24)

where Ta is the delay time at shot A, T1 is the delay time at geophone 1, Xa1, is the horizontal distance between
shot A and geophone 1, and ta1 is the observed travel time from shot A to geophone 1. The refractor velocity is V2.
A complete system becomes, in matrix form, the following:

G �m = d (25)

6 USING BSU 100

or
1 0 1 0 Xa1
1 0 0 1 Xa2
1 1 0 0 Xab
0 1 1 0 Xb1
0 1 0 1 Xb2

 �

Ta
Tb
T1
T2
1

V2

=

ta1
ta2
tab
tb1
tb2

 (26)

Equation 24 is the first row of equation 26. Matrix G is constructed by a program, bref, such that the first
columns correspond to the shots, the other columns the geophones, ending in a last column giving the distance
between a shot and receiver.

6.9.5.1 Adding Constraint Equations In practice, one may not have a geophone at shot B, or there may be
geophones without observed first arrival times. In those cases, one must add constraint equations to the bottom of
the matrix, G. For example, if we were unable to pick a time for the signal from Shot A to geophone 2, we might
add a constraint that sets delay time at geophone 1 equal to that at geophone 2 (ie. T1 ' T2). That system would
look like this:

1 0 1 0 Xa1
1 1 0 0 Xab
0 1 1 0 Xb1
0 1 0 1 Xb2
0 0 9 −9 0

 �

Ta
Tb
T1
T2
1

V2

=

ta1
tab
tb1
tb2
0.0

 (27)

In this example, we set T1 equal to T2 with a weight of 9 fold in the least squares solution. This is the last row
of matrix G in equation 27. It is like the following equation 28 being repeated 9 times in the matrix equation 27:

T1−T2 = 0 (28)

The effect is to strongly weight these two delay times equal. The OLS solution to Equation 27 is again given by

m =
[
GT G

]−1
GT �d (29)

where, in the case of Equation 27, the vector, m, contains the delay times for the shots, receivers, and the refractor
slowness.

m =

Ta
Tb
T1
T2
1

V2

 (30)

If we want to constrain the refractor velocity there is a way to do that too. Perhaps we lack reverse profiles
or a second shot with at least a different angle between the shots and geophones which would yield more than
one apparent refractor velocity. Modifying the above situation to include only shot A with a constrained refractor
velocity, and a constrained delay time, Ta, we could set up a system like this:

1 1 0 Xa1
1 0 1 Xa2
0 0 0 4000
1 0 0 0

 �

Ta
T1
T2
1

V2

=

ta1
tab
1.0
.005

 (31)

Here, we set the velocity of the refractor at 4000 m/s and constrain the shot A delay time to .005 seconds. Both of
these values would need to come from some other source, like an intersecting survey that was absent the defects
here.

6 USING BSU 101

6.9.6 Delaytime Solution for Shoulder Line

This example is an introduction to the delaytime package included with BSU. We have a classic reverse profile
situation with records k008.seg and k009.seg. We begin with executing bref for a normal refraction survey.

bref 0002 2 30 300 0 0 k008.seg k009.seg

This will restrict offsets to the interval of 30 to 300 meters (hopefully excluding direct arrivals). The files
created are

• G0002 System matrix for direct arrivals

• D0002 Data vector with pick times

• E0002 Elevation and station vector for plotting

The procedure is then to start a Octave session and execute the program delaytm.m from within the Octave text
window. If we do this, we will get a faulty solution (negative delay times which would put the refractor above the
ground level). The problem is under-determined due to missing data from the offsets less than 30 meters. We have
to edit files G0002 and D0002, adding constraint equations. There are 48 channels in these data, so a “G” matrix
less than 2x48 rows will spell trouble. The same is true for the “D” matrix. In fact, we note that there are only 83
rows, not 96. An additional problem (beyond no picks for less than 30 meter offset) is that the shots are offset from
the line, beyond the default distance to constrain the delay times to a geophone location. We can obtain a solution
by editing the G0002 and D0002 files. We add constraint equations that

1. Weight the shot delay time to match that of the closest geophone. Thus, the k008.seg shot will match
geophone station 1, and the k009.seg shot will match geophone station 48 (check a header dump).

2. Weight the geophone stations without picks to match the closest station with a pick. Thus, for shot k008.seg
we will need 6 constraints, and for shot k009.seg, we will need 7 constraints.

All together, we require 15 constraints (2 for shots, 13 for receivers). We add the constraints at the bottom of
files G0002 and D0002. Included in directory headWave you will find the original and modified (with constraints)
needed to obtain a solution. Weighting these constraints with a factor of 9 seems to work well. Thus, the geophone
constraints will have a +9 and -9 to form an equation which will make two delaytimes equal. The corresponding
“data” will be zero. Here is a partial listing.

9 0 -9 0 0 0 0 0 0 0 . . .
0 0 9 0 0 0 0 0 -9 0 . . .
0 0 0 9 0 0 0 0 -9 0 . . .
0 0 0 0 9 0 0 0 -9 0 . . .
0 0 0 0 0 9 0 0 -9 0 . . .
0 0 0 0 0 0 9 0 -9 0 . . .
0 0 0 0 0 0 0 9 -9 0 . . .

The first two columns are for the shots, the rest for receivers, up to an offset column. The first row equates the shot
8 delay time with geophone 1 delay time (their weighted by 9 sum equals zero, making them equal). The other
rows set each geophone delay time equal to that of station 7. Again, the weighted sum of each delay time with that
of station 7 will equal zero, making the delaytimes equal in a least squares sense. The match is not exact, since
there are many other rows in the “G” matrix. For each constraint row added to the “G” matrix, there will be a an
additional row added to the “D” vector, and the value for the data will be zero (to make the equation an equality
statement). See section 6.9.5.1 for details on adding constraints.

To obtain a solution, refractor velocity, shot delay times, and geophone delay time constraints were added and
can be compared to the original bref generated matrices. Using the *.mod versions, we obtained a solution shown
in Figure 33. For details on running program delaytm.m, see section 6.9.11.

6.9.7 Broadside Shooting: Slope Line

Figure 34 is a base map showing a portion of the survey area. Data acquisition included a long line (5 meter
geophone spacings) with reverse profiles along the shoulder of the highway. Shorter, cross lines were shot in the
upslope direction with nominally 1 meter geophone spacings. The narrow right-of-way and steep slope conditions

6 USING BSU 102

Receiver Station Number
10 20 30 40

988

990

992

994

996

998

1000

1002

E
le

v
a

ti
o

n
 (

m
)

Receiver Structure (V1=900 V2=4123 m/s)

0 10 20 30 40
30

40

50

60

70

80
+=Observed Times −−Solution

A
rr

iv
a

l
T

im
e

 (
m

s
e

c
)

STATION

Refractor

Ground Level

Figure 33: Delay time solution for line along road shoulder. The structure plot has been squished vertically to
remove most of the vertical exaggeration in a simple figure.

prevented locating source points up the slope, and provided a severe restraint on the geophone locations in the zone
of most interest. A concern was that not enough offset could be obtained in the up-slope direction.

The problem was solved in two stages. First, we did conventional reverse profile interpretations of the longer,
line which paralleled the roadway (shoulder line above). Second, we used the first solution to constrain the delay
time at source points used to acquire the cross-lines. In this example, we will work with just one of the cross-lines,
line number 3. We will use two Bison records which were acquired with a hammer (15 fold vertical stack).

In Figure 34 we see line 1 (along the roadway) and the cross-line (line 3). The source point for shot record 10
was located near station 24 on line 1. The source point for shot record 11 was located near station 1 on line 1. We
will invoke constraints to obtain a solution by using results from the line 1 solution.

6.9.7.1 Delay time Constraints The line 1 solution yielded a delay time of 0.0089 seconds at the hammer
location for shot 10, and a delay time of 0.0150 seconds for the hammer location for shot 11. These values will be
used to constrain the line 3 solution.

6.9.7.2 Refractor Velocity Constraint The other major constraint will be the refractor velocity, V2=4187 m/s
determined from reverse profiles on line 1. This constraint is necessary since reverse profiles were not possible for
line 3. As can be seen on Figure 34, the hammer blows fired broadside into line 3. The location for the source was
not arbitrary, but chosen to be far enough away from all the geophone stations on line 3 (beyond the cross-over
distance for the refraction). The bedrock refractor was granite, the overburden was silty sand with gravel (Unified
classification SM). Soil testing indicated an internal angle of friction of 31.5o . Given that the topographic slope
was about 30o , the in place overburden was judged to be at the angle of repose.

6.9.8 Converting the Bison File to BSEGY, Setting Geometry (topcon, bis2seg, bhed)

If you have unzipped the sample data set, you will find 4 files included to illustrate this example. In the bison
subdirectory, /ID-102/bison, are the files:

• line3.nez [survey data from a Topcon total station, converted to NEZ format (5A12).

• bnk00010 [the Bison Engineering Seismograph file for shot 10]

• bnk00011 [the Bison Engineering Seismograph file for shot 11]

• gogeom [a script which will automate the process and is described next]

6 USING BSU 103

line 3

s
h
o
u
ld

e
r

li
n
e

Figure 34: Base map for refraction survey (line 3 goes up hill from the roadway)

6.9.8.1 Contents of the gogeom script. The topcon man page and online documentation will be useful in
understanding the first command. What it does is combine the survey information from line3.nez with header
information from the Bison file, bnk00010 to form a file, bnk00010.xyz which can be read by program bhed. The
program bis2seg converts the Bison file to a BSEGY file with minimal headers, then bhed is run and merges the
bnk0010.xyz information into the headers to complete the geometry setting. The Unix move command, “mv” , is
used in places to rename the file to the 4 character BSEGY convention. The flow is replicated for shot 11. The
gogeom script is as follows:

#!/bin/sh
convert Bison to BSEGY
shot10 (at station 24 line 1) Hammer Source
topcon line3.nez bnk00010 0003 0. 24 48 1 48 10 0. 0 180 0 0
bis2seg bnk00010
mv bnk00010.seg k010.seg
bhed k010.seg bnk00010.xyz 0
mv bhedk010.seg k010.seg

shot11 (at station 1 line 1) Hammer Source
topcon line3.nez bnk00011 0003 0. 1 48 1 48 11 0. 0 180 0 0
bis2seg bnk00011
mv bnk00011.seg k011.seg
bhed k011.seg bnk00011.xyz 0
mv bhedk011.seg k011.seg

After running gogeom, you will have files k010.seg and k011.seg in the bison directory. Move these to the /ID-
102/seg directory, and change to that directory for the next step in the process. Figure 35 is a plot of the k011.seg
data. The data have been scaled by program bscl, and then plotted with Seismic Unix, clip=1.

By the way, for those who don’t have Bison formatted data, there is an alternative program in BSU named

6 USING BSU 104

0

0.05

0.10

0.15

 T
im

e
 (

s
)

10 20 30 40
Station

Scaled by 0.02532636 bsclk011.seg

pick

trace 20noise (set picks=0)

Plotted with Seismic Unix (SU)

Figure 35: Scaled k011.seg refraction data

topcon2. It does essentially the same thing as topcon, but for SEG-2 formatted seismograph files. You will need to
read the man pages on topcon2, since there are some differences.

6.9.9 Picking First Breaks

This topic was initially covered in the down-hole section 6.8.1. As described in that section, one copies the file
segpic.m into the working directory, starts Octave and picks first arrivals. The program, bpic, is used to insert the
pick times into the trace headers. Not all traces can be picked due to some background noise. In those cases,
one should set the pick time to exactly zero, since program bref will use that convention to build suggested
constraint equations. Figure 36 shows trace 20 of k011.seg as it appears during the execution of segpic.m in
Octave. My picks are included in the data sample distribution as files k010.pic and k011.pic for comparison with
your own picks.

6.9.10 Building the System of Delay Time Equations (bref)

The philosophy behind program bref is that the computer does computations, but the user makes the decisions.
The delay time formulation is described more fully in Michaels [9] . The formulation is a linear matrix equation
of the form

Gm = d, (32)

where the matrix, G, contains information about the source and receiver geometry, m, is a vector of delay times
and the refractor slowness, and the vector, d, holds the observed first arrival pick times. When multiplied out, a
row of equation (32) can be written as

Ts +Tg +
x

V2
= tp , (33)

where Ts is a shot delay time, Tg is a geophone delay time, x
V2

is the horizontal shot to geophone separation divided
by the refractor velocity, and tp is the first break pick time, assuming that the geophone is located far enough away
from the source to have the refracted head wave arrive before any other waves.

6 USING BSU 105

0 0.02 0.04 0.06 0.08 0.1

−200

−100

0

100

200

Time (s)

Trace Number 20

Trace 20 Pick Time

0.0466 sec

Figure 36: Trace 20 as seen in segpic.m run

6.9.10.1 Running bref This is an interactive program which prompts the user as the following dialog illus-
trates. The user responses are boxed.

enter: line number (4 characters)
0003
Enter: number of shots
2
Enter: minimum offset to include
40
Enter: maximum offset to include
200
Is output for refraction or direct analysis?
0=refraction 1=direct
0
irecip 0=normal 1=reciprocal shooting
0
Enter: input file name
k010.seg
Enter: input file name
k011.seg
shot x,y= 9927. 9773.
shot x,y= 9883. 9666.
Traces Processed = 48
====> output in G0003
====> listing in brefk010.lst

In the above example, the program writes 3 files, the last 4 characters of which are the line number as specified
in the dialog.

6 USING BSU 106

1. G0003 system matrix, G, of equation (32)

2. D0003 data vector, d, of equation(32)

3. E0003 elevation file (3 columns; trace#, station_name, elevation)

In general, you will have to edit the Gxxxx and Dxxxx files. The sample data set (ID-102.zip) includes examples
of these files as created by bref (G0003.org etc.) and as modified to produce a constrained solution (G0003.mod
etc., 15 constraints). Specific files created by bref will be highly dependent on the first break picks in the *.seg
file trace headers. The convention is to flag picks exactly equal to zero as being unable to be picked. If none of
the *.seg files has a pick at a particular geophone station, then the problem will be singular (unless you manually
edit the file and add some rows to constrain the solution). Bref will make an attempt to add constraint rows to the
bottom of the Gxxxx file, but they will be incomplete, since the user must decide what to do (don’t expect this
code to make critical decisions, that is your job). To replicate samples in archive, see README file in slopeLine
directory.

6.9.10.2 Conventions: Structure of Gxxxx matrix The convention is to have the first N_shots columns corre-
spond to source positions. The remaining N_traces columns correspond to the geophone stations. In our problem,
there are 2 shot records, so the first two columns of G0003 are for shots 10 and 11 (because that was the order
they were specified when running bref). The remaining columns correspond to geophone stations in the order the
traces are read from the *.seg files. The last column is the horizontal distance between the source and receiver. The
following matrix equation illustrates the setup for a very small problem (just for illustration, 2 shots, 3 geophones):

1 0 1 0 0 x11
1 0 0 1 0 x12
1 0 0 0 1 x13
0 1 1 0 0 x21
0 1 0 1 0 x22
0 1 0 0 1 x23

 ·

Ts1
Ts2
Tg1
Tg2
Tg3

1
V2

=

t11
t12
t13
t21
t22
t23

 , (34)

where the shot delay times are Ts j and the geophone location delay times are Tg j . The refracted, first arrival
times are indicated as tsr for the s-r shot and receiver pair, and the offset between the s-r shot-receiver pair is also
subscripted as xsr .

6.9.10.3 Conventions: Structure of Dxxxx vector The convention is for two columns. The first column is the
observed first break refracted arrival time. The second column is the geophone station label. If there are constraints
at the bottom, then these will be as needed to complete a constraint equation.

6.9.10.4 Editing the Gxxxx and Dxxxx files Suggested constraint equations are weighted by a factor of 9. If
you inserted my picks into the *.seg data trace headers, then you will note that bref has returned a Gxxxx matrix
with 4 rows at the bottom that need editing. One strategy is to set the delay time for an unpicked station exactly
equal to the nearest neighbor which does have a pick. One does this by replacing a “0” with a “-9” at the station
which has the constraining value. The idea is to form an equation which sums to zero. Thus, to constrain the delay
time for geophone station 8 to equal that at station 7, we edit the file, placing a -9 in column 7 of the row with a
bref provided 9 in column 8. The corresponding entry in the same row of Dxxxx will be zero. Thus, the product
Gm=d produces a constraint equation of

−9Tg7 +9Tg8 = 0. (35)

where Tg7 is the delay time at geophone 7, and Tg8 is the delay time at geophone 8. In the least squares solution,
this is given a weight of 9, which makes the constraint fairly strong.

In our example problem, one needs additional constraints, beyond what is required for unpickable data. First,
to tie the line 1 solution, we need to constrain the shot delay times to match the values obtained from the line 1
solution. In this case, the decision is to give these constraints a weight of 10 (the math is simple, move the decimal
over one place). Thus, one adds two rows in the G0003 file, one has a 10 in column 1, and the other has a 10 in
column 2. Corresponding rows need to be added to the D0003 file. In these rows (first column) we place the delay

6 USING BSU 107

times from the line 1 solution (scaled by a factor of 10). Thus, for the row with a 10 in column 1 of the G0003
file, we enter a value of 0.0890 in the D0003 file, which is 10 times the delay time at station 24 of line 1, the same
location where the hammer was placed for shot 10, file k010.seg. For shot 11 (column 2 has a 10 in G0003), we
place a value of 0.1500 which is 10 times the delay time at station 1 of line 1. Thus, the product Gm=d produces a
constraint equations

10Ts1 = .0890
10Ts2 = 0.150 , (36)

where Ts1 is the delay time for shot 10 (first column), and Ts2 is the delay time for shot 11 (second column).
One last constraint equation must be added. This is to constrain the refractor velocity. We can not solve for this

since both source positions are basically measuring a single apparent velocity on the refractor. We draw on the line
1 solution again (it had reverse profiles and was able to resolve the refractor velocity). The refractor velocity was
found to be 4187 m/s for the granite. One way to do this is to add one more row with the only non-zero value being
the refractor velocity in the last column of G0003. Normally, the source-receiver distance goes in this column,
but here, we make it a constraint by adding a last row to D0003, and inserting a “data” value of 1.000 in the first
column. Thus, the product GM=d produces a constraint equation

4187
V2

= 1.000 (37)

from this last row. The files G0003.mod, D0003.mod and E0003.mod included with the data sample are modified
as described above.

6.9.11 Running the Delay Time Inversion (delaytm.m)

The actual solution is computed in a Octave procedure, delaytm.m, found in the BSU distribution. The overburden
velocity was determined to be 664 m/s from near offset and up hole analysis (line 1 was recorded with buried
explosives). The procedure writes a number of *.dat files which are read for additional plotting.

Dialog when running delaytm.m A number of GUI prompts require responses from the user. These are
described as follows:

• Choose a G matrix file. Select G0003.mod, or perhaps your own edited version. Click OK

• Choose a D vector file. Select D0003.mod, or your own version. Click OK.

• Choose an E vector file. Select E0003.mod, or your own version. Click OK.

• Number of Shots? Enter 2 and click OK.

• Number of Channels? Enter 48 and click OK.

• Enter smoothness constraint. Enter a value of 0.1. What this does is increase the least squares error slightly,
but adds a built in change to the objective function (the spatial derivative of the delay time solution). A value
of zero here will produce the smallest error in the solution, but may map picking noise into false structure).

• The text window will show the shot delay times. They should agree with those specified in the constraint
equations.

• The graphic window will have the refractor velocity in the title, and it should agree with the constraint
applied in our problem. The plotted curve is a graph of the delay time solution, geophones.

• Enter overburden velocity. Here, type in a value of 664 as discussed above.

• The graphic will show a plot of the ground topography and the refractor structure. This is one end-limit
solution that resolves the delay times completely as variations in the refractor structure. This is the preferred
solution for this geologic setting.

6 USING BSU 108

• Enter a constant refractor depth. This is an alternative solution which resolves the delay times as variations
in the overburden velocity (perhaps due to variations in water content). If you use the default, 10 m, you will
see that the overburden velocity would have to vary from 1265 to 300 m/s to explain the data. This end-limit
solution is not preferred in this geologic setting.

• Number of constraint equations? Enter 7 here, corresponding to the number of rows at the bottom of the
G0003 file that we edited. This helps avoid a completely trashed plot where constraints become overprinted
with the time plot. With more than one shot record, there may be some over plot of the computed times in
this last graphic. You can fix that in Xfig.

Resolving Delay Times The delaytm.m procedure solves for the delay times, and then resolves them into
two end-limit solutions. Variations in delay times are resolved totally into a variation in the refractor structure with
the formula

h = V1
cos(θ) ·Tj

θ = arcsin
(

V1
V2

) , (38)

where Tj is the j-th delay time and “h” is the distance from the source or geophone to the refractor. This distance,
h, is a radius specifying a circle, somewhere on which the refractor may be found. In delaytm.m, the refractor
position is plotted a distance, h, directly below the source or geophone (unmigrated position). For the purpose of
most engineering surveys, migration of the refractor point is not a significant issue (the distances are quite small).

The alternative end-limit resolution of delay times is as a variation in overburden velocity. The user provides a
distance from the recording surface to the refractor (held constant), and an overburden velocity is found from the
formula

V1 =
V2√

1+
(

TjV2
h

)2
, (39)

where Tj is the j-th delay time and “h” is the constant distance from the recording surface to the refractor. This
assumes that the refractor velocity, V2 , is constant, and the only variation is in V1 , the overburden velocity. This
type of solution makes sense when the water content of the overburden soil is known to vary, and the overburden
thickness is relatively constant. In reality, the truth will be somewhere between these two limiting cases. See
Michaels [9] for a discussion on this topic.

One should probably produce xfig scaled plots, as some CAD work is usually required to clean things up.
Figure 37 shows how a final merging of the exported *.fig files will look with a little CAD effort. In this case, the
structural solution, Figure 37B is preferred because of our knowledge of the geology from trenching and surface
observations.

6 USING BSU 109

10 20 30 40

990

1000

1010

1020

E
le

v
a
ti
o
n
 (

m
)

Receiver Station Number

Receiver Structure (V1=664 V2=4187 m/s)

10 20 30 40

400

600

800

1000

1200

V1 Velocity Solution (m/s) H1=10 m

Receiver Station Number

O
v
e
rb

u
rd

e
n
 V

e
lo

c
it
y
 (

m
/s

)

0 10 20 30 40

35

40

45

50

55

60

STATION

+=Observed Times −−Solution

A
rr

iv
a
l
T

im
e
 (

m
s
e
c
)

ground le
vel sandy silt

V1=664 m/s

granite

V2= 4187 m/s

(A)

(B)

(C)

Figure 37: Line 3 solution, merged xfig plots. A). Arrival times and fit, B). Structural Solution (accepted), C).
Overburden velocity solution (rejected)

6 USING BSU 110

6.10 Reciprocal Refraction
When shooting a refraction profile across a river, it is advantageous to exchange the conventional shot and geophone
locations for the survey. The river environment is typically very noisy due to the river current and its disturbing
effects on the geophone. Placing the geophones on the river bank, and deploying an airgun source off an existing
bridge can be very successful in developing a refraction profile. An example is shown in Figure 38. In theory, one
could use just 2 geophones, one on the north bank, and one on the south bank. When sorted to common geophone
gathers, this would provide reverse profiles for refraction analysis. However, deploying a grid of geophones costs
very little more in effort, and opens up the opportunity for array forming to further increase the signal to noise.
Selected files from this project may be downloaded from the BSU Database web page.
Go to https://173.255.241.228/BSU/. Click on the check boxe for Horse Shoe Bend and then on submit. It will
list the download archive. ID-103.zip contains the raw EGG SEG2 files, processed BSEGY and SEGY files with
some scripts. Assuming you have the ID-103 archive and unpacked it in a convenient location, you will note that
it has the following directory structure:

ID-103
|--- bref
|--- seg
| |---temp
|--- seg2
‘--- sgy

Packaged with BSU is the Octave program delaytmR.m. The “R” in the name indicates it is for use with
reciprocal shooting. This program is nearly identical to the previously described program without the “R” in the
name. There is one significant difference, and that is the requirement for an additional water depth file, wds.dat.
This file consists of 2 columns, (water depth, shot station number).

The reciprocal nature of the problem is done entirely with BSU programs which resort to common geophone
gathers. The roll of shot and receiver are reversed, so pretend that when bref is run, the question of number of
shots is answered by the number of receiver gathers. The Octave processing is essentially blind to this reversal in
roles, since it merely reads the bref generated matrices and treats the picks as though they were from common shot
gathers, with the additional processing of a water layer.

6.10.1 Sorting to Common Receiver Gathers

In this example, we have 21 shot records taken with shot positions moving across the river. Each shot record
contains two blocks of channels with a total of 64 channels (some of which were disconnected since the cable take
outs would have been on the bridge). One block is from the North bank, the other from the South bank of the
river. A partial listing of the header dump shows the south block of channels for the northern most shot, 1001. To
save space, not all channels are shown. This type of survey can be very challenging, since good record keeping is
essential. Here, a significant number of cable take outs are left unconnected. Getting off by even one channel can
lead to chaos. The actual shots were in the river, suspended from the bridge deck by the compressed air hose. The
coordinates in the headers are for the airgun position in the river, NOT the suspension point on the bridge. The
airguns drift somewhat west of the bridge due to the current.

https://173.255.241.228/BSU/

6 USING BSU 111

river bank

river bank

river flow

geophones on bank

geophones on bank

sh
o
ts

 in
 r
iv

e
r

e
xi

st
in

g
 b

ri
d
g
e

Figure 38: Reciprocal shooting for refraction surveys across rivers. Bridge foundation investigations benefit from
placing the geophones on land, and the source suspended from the bridge in the river.

6 USING BSU 112

|-------------------------------|
| PARTIAL SEGY HEADER DUMP |
1001.seg

Length = 4000 samples | Shot Elevation = 789.3
Sample Interval = 0.00025 sec. | Shot Depth = 0.0
Delay Time = 0 msec. | Up Hole Time = 0 msec
Low Cut Filter = 10 Hz. | Shot X-COORD = 1052.01
High Cut Filter = 1000 Hz. | Shot Y-COORD = 1101.10
Line ID: | Shot Date (year.day) = 0.0000
Shot Orientation: | Shot Time (hr:min) = 00:00
Azimuth= 0 Deg. Vertical=180 Deg.| Charge Size (grams)= 0

TRACE|SHOT| STATION | OFFSET| RECEIVER |VERT|1STBRK|K-GAIN|AZI|VER|

#	REC.	SHOT REC		ELEV. X-COORD Y-COORD	FOLD	(SEC.)	(dB)		

1 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
2 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
3 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
4 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
5 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
6 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
7 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
8 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
9 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|

10 |1001| 00 30| 90.56| 789.53 1010.76 1020.48| 7|0.0000| 24 | 0| 0|
11 |1001| 00 29| 90.62| 789.48 1009.83 1020.89| 7|0.0000| 24 | 0| 0|
12 |1001| 00 28| 90.54| 789.48 1008.99 1021.43| 7|0.0000| 24 | 0| 0|
13 |1001| 00 27| 90.56| 789.44 1008.22 1021.83| 7|0.0000| 24 | 0| 0|
14 |1001| 00 26| 90.58| 789.37 1007.26 1022.35| 7|0.0000| 24 | 0| 0|
15 |1001| 00 25| 95.28| 789.86 1005.26 1018.09| 7|0.0000| 24 | 0| 0|
16 |1001| 00 24| 95.34| 789.90 1006.10 1017.55| 7|0.0000| 24 | 0| 0|
17 |1001| 00 23| 95.32| 789.90 1006.98 1017.09| 7|0.0000| 24 | 0| 0|
18 |1001| 00 22| 95.41| 789.93 1007.81 1016.55| 7|0.0000| 24 | 0| 0|
19 |1001| 00 21| 95.51| 789.98 1008.65 1016.01| 7|0.0000| 24 | 0| 0|
20 |1001| 00 20| 100.45| 790.21 1006.44 1011.59| 7|0.0000| 24 | 0| 0|
21 |1001| 00 19| 100.38| 790.23 1005.57 1012.11| 7|0.0000| 24 | 0| 0|
22 |1001| 00 18| 100.31| 790.22 1004.69 1012.65| 7|0.0000| 24 | 0| 0|
23 |1001| 00 17| 100.29| 790.23 1003.86 1013.13| 7|0.0000| 24 | 0| 0|
24 |1001| 00 16| 100.25| 790.28 1003.02 1013.64| 7|0.0000| 24 | 0| 0|
25 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
26 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
27 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
28 |1001| 00 00|1715.28| 0.00 0.00 0.00| 7|0.0000| 24 | 0| 0|
. . . continues for total of 64 channels . . .

Note that channels 1-9 are disconnected from any geophones, as are 25-28. The live channels in the portion
of the dump shown are 10-24. We are particularly interested in the “STATION REC” label, as this will be used to
select a single geophone signal in our gather. We begin by concatenating all the shot records into a single file using
simple Unix commands in a bash script.

#!/bin/bash
script to concatenate all shot records into file 0000.seg
F="1021.seg 1020.seg 1019.seg 1018.seg 1017.seg 1016.seg 1015.seg 1014.seg 1013.seg 1012.seg 1011.seg
1010.seg 1009.seg 1008.seg 1007.seg 1006.seg 1005.seg 1004.seg 1003.seg 1002.seg 1001.seg"
for f in $F; do
cat $f >> 0000.seg
done

We then use program bext to extract those signals who have a “STATION REC” header of 26.

#!/bin/bash
Note: 4char name space,space,2,6
bext 0000.seg r " 26"
mv bext0000.seg VP26.seg

The result can be viewed by examining the header dump for file VP26.seg. Because the shots were concatenated
in order from largest file number to smallest, our extraction of geophone 26 signals retains that ordering. Here is
the partial header dump of the new file. Note that the first trace corresponds to SHOT RECORD, 1021.seg. This is
labeled as SP100 on the map (SP=shot point). The last trace corresponds to the Northern most shot, SP00 on the
map. All the traces are for geophone STATION REC = 26. We named the file VP26.seg following the convention
of VP=voltage point (a historic reference to the take-out where a geophone is plugged in). On Figure 38, VP26 is
labeled V26 to save space, and the SP is dropped for the similar reason, to avoid clutter.

6 USING BSU 113

|-------------------------------|
| PARTIAL SEGY HEADER DUMP |
VP26.seg

Length = 4000 samples | Shot Elevation = 789.9
Sample Interval = 0.00025 sec. | Shot Depth = 0.0
Delay Time = 0 msec. | Up Hole Time = 0 msec
Low Cut Filter = 10 Hz. | Shot X-COORD = 1006.80
High Cut Filter = 1000 Hz. | Shot Y-COORD = 1012.04
Line ID: | Shot Date (year.day) = 0.0000
Shot Orientation: | Shot Time (hr:min) = 00:00
Azimuth= 0 Deg. Vertical=180 Deg.| Charge Size (grams)= 0

TRACE|SHOT| STATION | OFFSET| RECEIVER |VERT|1STBRK|K-GAIN|AZI|VER|

#	REC.	SHOT REC		ELEV. X-COORD Y-COORD	FOLD	(SEC.)	(dB)		

1 |1021| 100 26| 10.33| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
2 |1020| 95 26| 6.30| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
3 |1019| 90 26| 4.33| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
4 |1018| 85 26| 6.51| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
5 |1017| 80 26| 10.92| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
6 |1016| 75 26| 15.79| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
7 |1015| 70 26| 20.72| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
8 |1014| 65 26| 25.83| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
9 |1013| 60 26| 30.77| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|

10 |1012| 55 26| 35.74| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
11 |1011| 50 26| 41.20| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
12 |1010| 45 26| 45.68| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
13 |1009| 40 26| 50.67| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
14 |1008| 35 26| 55.63| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
15 |1007| 30 26| 60.64| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
16 |1006| 25 26| 65.61| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
17 |1005| 20 26| 70.62| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
18 |1004| 00 26| 90.58| 789.37 1007.26 1022.35| 9|0.0000| 24 | 0| 0|
19 |1003| 15 26| 75.61| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
20 |1002| 10 26| 80.62| 789.37 1007.26 1022.35| 1|0.0000| 24 | 0| 0|
21 |1001| 00 26| 90.58| 789.37 1007.26 1022.35| 7|0.0000| 24 | 0| 0|

A single shot record collected with an airgun in the river can produce a large amplitude surface wave train
along the river bottom. That was the case with this survey, and so the P-wave refractions required enhancement to
be picked. This included array forming by summation of geophone signals from geophones in the grid, followed
by filtering to enhance the higher frequency content. Figure 39 illustrates the benefit of additional processing. The
enhancement processing with BSU included:

• Array Summing with program bsum. Geophones in a row were summed, not to cancel the surface waves,
but rather to enhance the P-wave refraction content.

• Profile Deconvolution with program bdcn. The operator length was 235 samples. The design gate was 0 to
.06 seconds. Stability factor was set at 1% of the zero lag autocorrelation amplitude.

• Band-pass Filter (zero phase) Pass band was from 50 to 100 Hz. Here, I used Seismic Unix (SU), because
bfil had not yet been written.

6.10.2 Running delaytmR.m

The P-wave enhancement was used to produce 3 North bank and 3 South bank enhanced data sets. The following
listing from the bref run documents the choice of parameters. The key parameter was to choose reciprocal shooting
(changes the header search from shots to receivers as can be seen in the listing).

6 USING BSU 114

0

0.2

0.4

0.6

0.8

 T
im

e
 (

s
)

20 40 60 80 100

(array v51)

0

0.05

0.10

 T
im

e
 (

s
)

20 40 60 80 100

P-wave Enhanced (array v51)

P−wave refractionRayleigh Waves

(A) (B)

Figure 39: Array forming and filtering to enhance higher frequencies were needed to pick refractions. (A) shows
an array formed record with strong Rayleigh and SV wave content. (B) is a blowup of the shallow data enhanced
for P-waves by filtering.

Program bref
Line Number: 0001
System matrix output File: G0001
Data vector output File: D0001

receiver x,y= 1049. 1104.
receiver x,y= 1009. 1021.
receiver x,y= 1051. 1108.
receiver x,y= 1007. 1017.
receiver x,y= 1054. 1113.
receiver x,y= 1005. 1013.

Number of traces= 19
Parameters:

Number of shots= 6
Minimum offset = 10.0
Maximum offset = 200.0
Refraction analysis
Average Receiver Spacing= 5.0079
Ground Consistent Zone= 3.7559
Input File Names:

N000.seg
S000.seg
N001.seg
S001.seg
N002.seg
S002.seg

The problem required 3 constraint equations. These were to set the 3 common geophone points and the neigh-
boring shot points to have the same delaytime.

6 USING BSU 115

20 40 60 80 100
780

782

784

786

788

E
le

v
a

ti
o

n
 (

m
)

Shot Station Number

Shot Structure (V1=1140 V2=2228 m/s)

0 20 40 60 80 100

20

30

40

50

60

+=Observed Times −−Solution

STATION

A
rr

iv
a

l
T

im
e

 (
m

s
e

c
)

water 1500 m/s

V2=2228 m/s

V1=1140 m/s

refractor

river bottom

Figure 40: Solution from delaytmR.m analysis of 6 common geophone records and 3 constraints. Note, even after
squishing the plot, there is about 12:1 vertical exaggeration on the structure.

6.11 Surface Wave Processing
The BSU package includes some software for Rayleigh wave analysis. These programs are as follows:

• bvax.f A fortran program which extracts a dispersion curve from a bsegy data set.

• FwdR1.m A Octave program which does the forward problem and displays a measured dispersion curve.
Where invR1.m is automated, this program is interactive, requiring the user to make changes to the model
with each iteration.

• invR1.m An automated Octave inversion program which reads the dispersion curve from a bvax run. The
input file to the Octave program is bvax.his. If multiple runs of bvax are to be made, the file bvax.his
should be deleted before each new run, since it is appended to during a bvax execution.

Example programs:

• rayleigh.m This is an example program which shows how to link the dispersion computing module disper.oct
(shared object) with the octave session. The fortran subroutine in file rwv.f is based on the fortran program
disper.f included in BSU. When running rayleigh.m, the subroutine file, rwv.f must be in the directory where
one is launching Octave. On execution of rayleigh.m, a check is made to see if a compiled version exists,
and if not a compilation step occurs. The object module is dynamically linked to the Octave procedure to
produce high speed computations. In addition to the Fortran file, rwv.f, two other files should also be in the
path or directory of computation. These are wrapper.cpp and build_disper_oct.

• moho.m Similar to rayleigh.m, but computes dispersion as a function of period rather than frequency. Also
an example program.

6 USING BSU 116

6.11.1 Example Rayleigh Wave Processing: Measuring Dispersion

The next step is to use the program bvax to measure a dispersion curve from the waveform data. Here, we are using
the synthetic data of Figure 45. The input parameters for a command line execution are show below:

bvax infile xmin xmax vmin vmax nvel . . .
fmin fmax delf bwd iskp ivscn

infile =input file name
xmin =minimum offset (float)
xmax =maximum offset (float)
vmin =minimum velocity
vmax =maximum velocity
nvel =number of velocity increments
fmin =minimum frequency Hz
fmax =maximum frequency Hz
delf =frequency increment Hz
bwd =filter bandwidth Hz
iskp =skip filtering (if files already exist)

1=YES 0=NO (-1=NO and delete when done)
ivscn =output velocity scan data sets

1=YES 0=NO

bvax wavV.seg .5 50. 50. 500. 200 6. 50. 1 .25 -1 0

The choice of frequency increment and bandwidth will depend on your data record length. For example, for
0.5 second signals, set del f = 2 Hz increments. For 2.0 second signals, set del f = 0.5 Hz. The longer the temporal
aperture, the finer the spectral resolution possible. The program determines phase velocity using cross correlations
of extremely narrow band signals (one can’t pick arrivals, that would be appropriate for a group velocity procedure).
At each frequency selected, trial velocities are applied as static shifts, and semblance computed to determine the
degree of alignment. A peak in the semblance is picked by a Golden Section search, and the hope is that the picked
peak is for the fundamental mode. The number of trial velocities needs to be large enough to provide good image
files, but need not be large if your interest is primarily in the picks of semblance peaks (output file bvax.his).

6.11.2 Running BVAX

This program measures surface wave dispersion. The bvax code has a number of outputs:

• bvaxnnnn.lst Output listing, nnnn.seg would be the input file.

• bvax.ps Post script plot file of measured dispersion.

• bvaxqc.ps QC multipage plot, one page for each frequency.

• bvax.his Text file with 5 columns: [Frequency, Phase Velocity, Velocity Uncertainty (1 Stdv), Semblance,
Tbar (mean), Tvar (variance)]

• semblance.dat Text file, 3 columns: [Frequency, Phase Velocity, Semblance] used to generate
Gnuplot files.

• CLRplot.gp This is a Gnuplot file that generates a color map of dispersion semblance values.

• clrplot.png BVAX automatically generated image from CLRplot.gp

• CNTplot.gp This is a Gnuplot file that generates a contour plot of dispersion semblance values.

• cntplot.png BVAX automatically generated image from CNTplot.gp

• MSHplot.gp This is a Gnuplot file that generates a mesh image of semblance values.

• GRYplot.gp This is a Gnuplot file that generates a grey plot image of semblance values.

6 USING BSU 117

Figure 41: Color plot of semblance for example soil profile of Figure 42. The fundamental mode appears as red.
A weaker higher mode is also visible as a lighter shade of blue.

6.11.3 Example Rayleigh Wave Processing: Synthetic Seismogram

A synthetic Rayleigh wave vertical component seismogram was created for the following 1D-layered model.
point depth (m) Vs (m/s) Vp (m/s) Density

1 0.0 125. 312. 2000.0
2 1.6 153. 382. 2000.0
3 3.2 217. 542. 2000.0
4 6.6 165. 412. 2000.0
5 16.0 387. 967. 2000.0

The above model specifies points of control. Between the control, the elastic moduli are linearly interpolated
in steps set by a incremental layer thickness. Here, the step size was 0.1 meters. A graphical display of this model
is shown in Figure 42. Note the curved interpolation of velocity when elastic constants are linearly interpolated.
One starts the process with program gendis which interactively prompts the user for the depths, velocities, and
densities. The result is a namelist file, disper.d, that is then read by program disper. Program disper computes the
phase velocity dispersion, creating as an output a dispersion file, (earth.crv in this case) and a plot of phase velocity
as shown in Figure 43

We compute a synthetic seismogram using the program, waves. Program genwav prompts the user for param-
eters like trace spacing, maximum time, component of motion, and produces output file waves.d. Program waves
reads waves.d and the dispersion curve saved in output file earth.crv from the disper run. Here we will use a
source moment tensor for a vertical impact source, a spectral band from 1 to 50 Hz (the total available from the
earth.crv file). Offsets will range from 1 to 48 meters, with 1 meter trace spacing. The program waves employs
a minimum phase wavelet with bandwidth reduced somewhat from the range of frequencies specified (to avoid
an abrupt transition from the available source spectrum). The source wavelet used in the synthetic seismogram is
shown in Figure 44.

6 USING BSU 118

0 200 400 600 800 100012001400

−30

−25

−20

−15

−10

−5

0

m/s

d
e
p
th

 (
m

)

SV and P Velocities

1.8 1.9 2 2.1 2.2

−30

−25

−20

−15

−10

−5

0

g/cm3
d
e
p
th

 (
m

)

Mass Density

Figure 42: Example Rayleigh wave model with 0.1 meter step interpolation between control. The interpolation is
linear in elastic modulus or density. See section 7.3.2 for additional details.

0 10 20 30 40 50 60
100

150

200

250

300

350

400

Frequency Hz

P
h

a
s
e

 V
e

lo
c
it
y
 M

/S

Dispersion: Phase Velocity

Fundamental Mode

mode 6mode 5mode 4mode 3mode 2mode 1

Figure 43: Phase velocity computed by program disper for the model of Figure 42.

6 USING BSU 119

0 0.1 0.2 0.3 0.4 0.5
−0.06

−0.04

−0.02

0

0.02

0.04

Time (s)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Frequency Hz

Rayleigh Wave source wavelet

Amplitude Spectrum

Figure 44: Source wavelet for synthetic Rayleigh wave seismogram, model of Figure 42.

Program waves (see section 7.3.6) computes the actual waveforms for a synthetic seismogram. Signals of
particle displacement, vertical component, are shown in Figure 45.

Figure 45: Synthetic vertical component Rayleigh wave seismogram, model of Figure 42. See section 7.3.6 for
further details.

6.11.4 Example Rayleigh Wave Processing: Manual Interpretation (FwdR1.m)

The output dispersion file bvax.his can be read by program FwdR1.m to manually invert the Rayleigh wave disper-
sion problem. The default install location for the Octave program is /usr/local/share/octave/site-m. The
initial model sets the number of control points in the model, shear wave velocities, and depth points. The initial
model is placed in a text file, for example call it model.txt.

Below is an example for a 5 point Vs profile. The first row is just the number of control points, 5 in this case.
The next row are the shear wave velocities at each depth point given in the 3rd row. The units are meters/second
and meters.

5
125. 153. 217. 165. 387.
0 1.6 3.2 6.6 16.

6 USING BSU 120

The Octave procedure requires Fortran subroutine, rwv.f and files wrapper.cpp, build_disper_oct, to be located
in the working directory or path. The Octave program will check to see if the ELF shared object, disper.oct, is
compiled and in the directory or path. If not, it will automatically compile and link this subroutine which speeds
up the computations. The script, build_disper_oct must be executable. The program FwdR1.m prompts the user
with a number of setup GUI’s after the initial question for the name of the model text file. The first asks for the
compressional velocity setting (constant ratio or fixed value). If you choose constant ration of Vp/Vs, then you are
prompted for Poisson Ratio, Grain Density, Porosity and Degree of water saturation. Edit if needed and then click
OK. A message will display the Vp/Vs ratio and density that will be used.

If data are present in the form of a bvax.his file, those will be plotted blue with error bars and the model
dispersion will be plotted in red. One is then prompted to continue or quit. If you continue, click Yes and the
current model will be displayed as a list of entry boxes. Make changes as desired to bring the red curve closer to
the blue curve. The Nlayer value is displayed, but if you change that, it will be ignored. To change the number
of control points, you will need to start fresh with a new model.txt file. Once you have a satisfying fit, click No
to exit the loop and then save your plots. The title of the Figure 1 plot has the current model. NOTE: Rayleigh
wave dispersion is primarily sensitive to shear velocity, Vs, but compressional velocity Vp and density will have a
noticeable effect. If you change the Vp and Density assumption, then you will likely make an adjustment to Vs and
depth.

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

 Velocity (m/s) or Density (kg/m^3)

D
e
p
th

 (
m

)

Model: Vs Vp Den [VSave=223.32 m/s]

0 10 20 30 40 50 60
100

150

200

250

300

P
h
a
s
e
 V

e
lo

c
it
y
 (

m
/s

)

 Zi=0.000 1.600 3.200 6.600 16.000 deltz=0.200 Lsqe=5.142e+00

Rayleigh Wave Vs=100.0 175.0 217.0 165.0 387.0

Frequency Hz

Vs30

Mass DensityVs Vp

(A) (B)

Figure 46: Manual modeling with FwdR1.m, final trial (A) dispersion and (B) soil profile. Vs30 is in the title bar
of (B) assuming parameters remain constant down to 30 meters.

6.11.5 Example Rayleigh Wave Processing: Automated Inversion (invR1.m)

The program, invR1.m, will attempt to determine a layered model which matches a measured phase velocity dis-
persion profile. As in program, FwdR1.m, the dispersion curve is read from a text file, bvax.his. The Fortran
subroutine, rwv.f, must also be in the directory. The inversion ran for 3 iterations. The solution is shown graphi-
cally in Figure 47. Only 3 singular values were used (see Figure 48).

6 USING BSU 121

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

D
e

p
th

 m

Soil Profile

Vs=121.5 Vs=151.5 Vs=212.3 Vs=155.9 Vs=387.0
 Zi=0.000 Zi=1.650 Zi=3.320 Zi=7.170 Zi=16.000 deltz=0.200 Lsqe=6.959e+00

0 10 20 30 40 50 60
100

150

200

250

300

350

Frequency Hz

P
h

a
s
e

 V
e

lo
c
it
y
 (

m
/s

)

Rayleigh Wave

Vp Density
Vs

(A) (B)

Figure 47: Automated modeling with invR1.m. Initial model and intermediate models are shown in cyan. The 3rd,
terminating iteration, is shown in red. The fit can be compared to that achieved in Figure 46. The model is shown
for the 3rd iteration and is tabulated in the caption of (B). Note that both velocity and depth of control points were
free to vary.

0 2 4 6 8 10
0

10

20

30

40

50

60

70
V

a
lu

e
Singular Values= 1.1E+01 5.5E+00 2.2E+00 9.6E−01 3.3E−01 2.4E−02 Not Used

Singular Values=6.7E+01 2.5E+01 2.2E+01 Used

100 150 200 250 300 350
−60

−50

−40

−30

−20

−10

0

W
a
v
e

 L
e
n

g
th

 m

Velocity m/s

Wavelength vs Velocity

calculated

observed

(A)

P=3

(B)

Figure 48: Automated modeling with invR1.m. (A) Dispersion as a function of wavelength. (B) Singular values
sorted by size. Only the 3 largest singular values were used (P=3).

6.11.6 Spectral Analysis of Surface Waves SASW (SASW.m, saswv.m)

Prior to the multi-channel recording of surface waves, the SASW method was developed to employ just two
geophones and spectrum analyzer instrumentation. The method has also be used with geophone signals processed
with the Fast Fourier Transform (FFT) [22]. A typical survey involves taking a source effort on both sides of the
geophones (only left side shown in Figure 49). Sounding is performed by expanding the geophone and source
separation, X, often changing the source so that low frequencies are radiated at larger spacings, X. Geophones
are placed symmetrically about the center line for all expansions. In this example, we take the first two traces of
our synthetic seismogram shown in Figure 45. Shown in Figure 49 are blow-ups of the first two traces. Octave
program, SASW.m, is used to compute the phase velocity dispersion.

Program SASW.m requires that function files segyinfo.m and bsegin.m be located in the same directory as the
data file and SASW.m. Upon execution, the program asks the user to select a *.seg file and two signals from the
*.seg data file. The FFT is then computed for both signals, S j(f) and Sk(f). The cross-spectrum is computed in
the frequency domain by multiplying one spectrum with the complex conjugate of the other spectrum:

G jk(f) = S j(f) · S̃k(f) . (40)

The cross spectrum, G jk(f) is complex. In polar coordinates, the phase is given by φ(f). A time delay is computed

6 USING BSU 122

0 10 20 30 40 50
0

50

100

150

200

250

300

V
e
lo

c
it
y
 m

/s

File: wavV.seg Trace: 1−−−2 Phase Velocity

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Coherence

Frequency Hz

−40

−30

−20

−10

0

10
D

e
c
ib

e
ls

Cross Power Spectrum

0 10 20 30 40 50

Meters Offset

CL

X X

geophones

Figure 49: SASW recording places two geophones about a center line. The FFT is used to perform a cross
correlation between the two signals in the frequency domain. The phase velocity dispersion curve is computed
from the phase of the cross correlation and knowledge of the geophone spacing. Unwrapping of phase is required
to compute dispersion beyond the spatial Nyquist frequency.

at each frequency by

t = T ·φ(f)/2π , (41)

where T is the period (T = 1/ f) for frequency, f. The phase velocity at each frequency, f, is computed by

V =
X
t

, (42)

where X is the spacing between the two geophones. The coherence, C, is computed from the ratio of the square of
the cross-spectrum amplitude squared to the product of the auto-spectra of each signal,

C =
|G jk(f)|2

G j j(f) ·Gkk(f)
. (43)

The coherence is computed using the pwelch function in Octave. This function divides a signal into a number of
overlapping intervals and averages the resulting spectrum (ie. the modified peridogram method).

Some cautions are warranted in using the SASW method. First, it is assumed that only the fundamental mode
is in the analysis window. Higher modes will have an adverse affect on the computations. This can be avoided
by using sources which radiate low frequencies at large geophone separations. Using a broad-band source at large
geophone separations increases the risk that higher modes will enter the analysis window. The dispersion curve
computed by SASW.m can then be inverted using the Octave program invR1.m, as was illustrated in the example
above. Thus, SASW.m is an alternative to bvax for computing a phase velocity dispersion curve.

Program saswv.m is for non-impulses sources. A sample data set is included in /usr/local/octave/site-m/dx32f.txt
(T-Rex Shaker data shared in an ASCE Geophysical Engineering Committee project). See file Dataformat.pdf in
the same directory that documents this included sample.

ll

6 USING BSU 123

6.12 Spectral Analysis
There are a number of ways to compute amplitude spectra of signals in BSU. The following are just some examples
using both Octave and compiled BSU programs.

6.12.1 Yule-Walker All Pole Spectra

6.12.1.1 Using yulewalker.m The Octave program, yulewalker.m can be used to read a single seismic trace
from a BSEGY file and compute an all pole spectrum. The order of the process is set by the number of terms to
include in the computation of an autocorrelation. Figure 50 shows the Geologan down-hole data.

0 50 100 150 200
0

2e+08

4e+08

6e+08

8e+08

Frequency Hz

A
m

p
lit

u
d

e

Amplitude Spectrum: twave.seg Order=116

0 200 400 600 800 1000
−1e+10

−5e+09

0

5e+09

1e+10

1.5e+10
Pick max lag for autocorrelation with mouse

0 0.1 0.2 0.3 0.4 0.5
−20000

−15000

−10000

−5000

0

5000

10000

Trace 30

Order 116 Picked

Time (sec)

Input Signal Trace 30

(A) (B)

(C) (D)

Figure 50: (C). Geologan down-hole data. Octave program yulewalker.m is used to select trace 30. (A) Picking
a length of the autocorrelation (nlag=116), (B) Downhole data, (C) Selected signal trace 30, (D) Yule Walker all
pole spectral estimate.

To run yulewalker.m, you need to have the following files in the same directory as the BSEGY data (in this
case, a file named twav.seg). Start Octave from within the directory with these files:

• segyinfo.m

• bsegin.m

• yulewalker.m

• twave.seg (or whatever *.seg file you want to analyze)

From within the Octave text window, issue the command,

yulewalker;

The program will prompt you for the file name in the Octave text window. Here, we enter twav.seg. Then a
GUI dialog panel will pop up and ask for the following input:

• Input? Data or Autocorrelation Is the file a time signal or an autocorrelation?
A GUI will pop up showing the number of traces, maximum recorded time, and sample interval. Click OK

• trace number (the signal we wish to compute a spectrum for)

7 SEISMIC MODELING WITH BSU 124

• Max Time and Frequency Entry boxes for calculation and display.

• Remove DC? Remove or not to remove DC (zero frequency) content.

• Pick Order of Spectrum Click with mouse on autocorrelation.
Yule Walker spectrum both in amplitude and Decibel displays will pop up.

The program then generates the plots as shown in Figure 50 A, B, C, and D. The Decibel version of the
spectrum is not shown here.

6.12.1.2 Using yulewalker.m with Autocorrelation Input The difference between time signals and autocor-
relation in section 6.12.1.1 and here is that the input would be an autocorrelation instead of a seismic signal. We
use the BSU program bxcr to compute an autocorrelation data set in BSEGY format. Fore example, using the same
data as above, we issue the following commands from an xterm within the directory with the data set of interest.

bxcr twave.seg twave.seg 0.0 0.5 0.1
bstk bxcrtwav.seg

The first command cross correlates the data set twave.seg with itself (ie. an autocorrelation). The gate is 0 to
0.5 seconds, for a maximum correlation lag of 0.1 seconds. This is followed by a stacking or averaging of all the
autocorrelations into a single signal with program bstk. This averaged autocorrelation is then replicated so that the
input and output BSEGY files have the same number of traces. In generating a spectrum, it does not matter which
one of the traces from file bstkbxcr.seg we use. They are all the same. In Figure 51 we again use trace 30, but could
have used any other equally well.

0 50 100 150 200
−1

−0.5

0

0.5

1
Pick max lag for autocorrelation with mouse

0

0.01

0.02

0.03

0.04
Amplitude Spectrum: bstkbxcr.seg Order=156

500 100 150 200

Frequency Hz

A
m

p
lit

u
d
e

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

0 20 40 60
0

20

40

60

80

Trace Number [amp=4.00E+00 percnt=200 bequbstk.seg]

Ti
m

e
(m

s)

Stacked Autocorrelation

Stacked Autocorrelation

Picked Order

(A) (B)

(C) (D)

Figure 51: (A) Picked portion of autocorrelation. Sets spectrum order at 156. (B) Input file from bstk of bxcr. (C)
Plot of the selected trace 30. (D) All pole amplitude spectrum.

In both of these examples of Yule-Walker spectra, the Octave programs are computing amplitude spectra (not
power spectra). The square root is taken of the power spectrum before plotting.

7 Seismic Modeling with BSU

7.1 Solution to Lamb’s Problem (lamb)
The BSU distribution includes some synthetic seismogram capabilities. The solution of Lamb’s problem (Lamb
[6]) is computed by lamb. The program, lamb, is a recreation of a program originally described by Mooney [15] .

7 SEISMIC MODELING WITH BSU 125

The algorithm closely follows that described in Mooney’s paper, with the exception that an autoregressive operator
is used to generate a minimum phase wavelet to filter the data (Mooney convolved with a zero phase wavelet).
Mooney’s work cites an earlier solution as the basis for his program (Pekeris [17]), and that paper is well worth
examining for clarification on any points not entirely clear in Mooney’s publication. The current BSU version only
implements the case for a Poisson’s ratio of 1

4 . Modification to other cases is relatively straight forward, and will
probably be done at some point in the future.

Briefly, Lamb’s problem is the solution for the inhomogeneous waves that travel on the surface of an elastic
half-space due to a vertical, point impact source. Lamb referred to these waves as major and minor tremors. Today,
we would call these the Rayleigh (major), P- and S-waves (minor). A test of the lamb program was to recreate
previously published solutions plotted in unit less time. The unit less time coordinate is given by

τ =
Vs · t

R
, (44)

where R is the range (m) from the source, t is time (s), and Vs is the shear wave velocity (m/s). This solution is
shown in Figure 52, and compares favorably with previously published solutions (Mooney [15] figure2; Pekeris
[17] figures 3 and 4; and Richards [19] figures 2 and 3, integrals I3 and I4 respectively). The GSL library provides
the necessary elliptical integrals.

0.4 0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Normalized Time (Vs*t)/r

0.4 0.6 0.8 1 1.2

−1

0

0.2

Normalized Time (Vs*t)/r

−0.8

−0.6

−0.4

−0.2

clip
(A)

Vertical Motion

down

up

P

SV

R

D
is

p
la

c
e

m
e

n
t

clip

P

away

inward

SV

Horizontal Motion
(B)

R

(After Mooney, 1974)

Solution to Lamb’s Problem

Poison’s Ratio = 1/4Sign Convention NOT SEG

Figure 52: Solution to Lamb’s Problem (after Mooney, 1974 [15]). Step function source.

7.1.1 Running Program lamb

This program has 14 input arguments. The user is encouraged to review the man page and the online documentation
for lamb. For the man page, type

man lamb

The online help is obtained by typing the following in an xterm,

lamb -h .

Most arguments are straight forward, and obviously necessary to computing a synthetic seismogram. Since the
code only permits a Poisson’s ratio of 1

4 , the program only asks for a S-wave velocity, Vs . No P-wave velocity can
be entered since this limitation sets Vp

Vs
=
√

3 . The input argument, itype, is used to select the type of signal which
will be output.

7 SEISMIC MODELING WITH BSU 126

7.1.1.1 The itype argument in lamb.

• itype=1: The vertical and horizontal ground displacement will be computed and output in files lambv.seg
and lambh.seg, respectively. The source function is a displacement step function.

• itype=2: This may be viewed in either of two ways. The derivative of a step function is an impulse function,
and itype=2 is the derivative with respect to time of the itype=1 case. Thus, this may be viewed as the ground
displacement for an impulse source function. Alternatively, this can also be viewed as the ground particle
velocity for a source step function.

• itype=3: The source function is a single degree of freedom dampened resonator (exponentially decaying
sinusoid wavelet, ground displacement function). The source is described by the sfreq and sdamp parameters.
The output signals are ground displacements.

• itype=4: The source function is the same as itype=3, but the signals have been differentiated with respect to
time. Thus, the output signals may be viewed as ground particle velocity for the itype=3 source.

• itype=5: This option switches the output signal from the actual ground motion to the motion of a geophone
element (which is modeled as a single degree of freedom dampened oscillator bonded to the half-space at
the surface). The geophone is described by the gfreq and gdamp parameters.

• itype=6: The itype=5 option with the output signal differentiated with respect to time. The output is the
geophone element velocity. This case corresponds to the voltage that would be recorded by a velocity
geophone.

• itype=7: The output signal is the source displacement function corresponding to itype=3, at the point of
source application. If you have run a case with itype=3, this is the source wavelet.

• itype=8: The particle velocity of the source function at the point of application. This corresponds to itype=4
source wavelet.

• itype=9: This is like itype=7, with a geophone bonded at the source point. This is the displacement source
wavelet as seen from the motion of a modeled geophone element.

• itype=10: This is like itype=8, with a geophone bonded at the source point. This is the particle velocity of
the source wavelet as seen from the particle velocity of a geophone element bonded to the source point.

7.1.1.2 The pol argument in lamb. This selects a sign convention. In addition, if pol=0 (Test Mode), then the
1/R amplitude decay is also removed (as was the case in computing Figure 52). If pol=-1, then an upward motion
produces a negative value (the SEG sign convention). Setting pol=+1 reverses the sign convention (upward motion
produces a positive number). Interpreting pol for horizontal motion is much more confusing. In real life, one must
keep track of the direction to the source, and the relative orientation of a geophone element, and how it is wired.
Basically, if pol=0 or pol=+1, then the sign convention of the motion is as shown in Figure 52. If pol=-1, then it
is the reverse of what is shown in Figure 52. In that figure, the word “away” means motion away from the source
location (in the direction of increasing distance away from the source).

7.1.1.3 The stab argument in lamb. There really is no need for a stability factor, unless you are running
itype=8 which takes the derivative right at the source point, R=0. With all other itype values, you can set stab=0.
The derivative operator used in lamb is a bilinear transform realization of the derivative with respect to time. In
terms of the Z-transform,

Y (z) =
2
∆t
· (1− z)
((1+ stab)+ z)

·X(z), (45)

where Y(z) is the output signal Z-transform, and X(z) is the input signal Z-transform. The stab factor nudges the
pole at the Nyquist frequency slightly off the unit circle to prevent extreme blow up of any Nyquist amplitudes in
the input signal. The derivative is realized by an ARMA operator. The formula which realizes equation (45) is

y j =
2
∆t

(
x j− x j−1

)
− y j−1

(1+ stab)
, (46)

7 SEISMIC MODELING WITH BSU 127

where y j is the j-th sample corresponding to the temporal derivative of x j , the j-th sample of the input signal being
differentiated.

7.1.1.4 Examples of lamb The signals shown in Figure 52 were computed by lamb in Test Mode (pol=0). The
command to generate the Figure 18 signals is

lamb 150. 1.0 1 2. .0005 150. 1700. 1 100. .3 100. .3 0 0.

Not all of the parameters matter (density won’t affect the result since it is test mode). There are many com-
binations of S-wave velocity and range that will work (see equation (44) for normalized time scale used here).
You can generate the plots of Figure 52 to confirm correct operation of the code. This is done in Octave, execute
the procedure traplt.m from within the Octave text window. Make sure you also have the functions bsegin.m and
segyinfo.m, in the working directory as they are called by traplt.m . Also note that you will have to specify the
axes limits to clip the signals as was done in Figure 52. After finishing execution, delete the second figure of the
spectrum and then issue an axis command.

axis([0.4,1.4,-0.4,0.9]) % for the vertical motion
axis([0.4, 1.4, -1.2, 0.2]) % for the horizontal motion

As a second example of what lamb can do, we can generate 48 channel records for vertical and inline radial
motion. The half-space medium has a mass density of 1700 kg

m3 , a Vs = 250 m/s and Vp = 433 m/s. The command
generating the synthetic seismograms is

lamb 1. 1.0 48 .5 .0005 250. 1700. 6 50. .7 10. .7 -1 0.

Figure 53 shows the resulting synthetics. Note that this is an elastic medium assumption. Actual soils may
differ significantly from an elastic assumption. So, take it for what it is. The data have been rescaled to show
waveforms. Each signal has been scaled by the L2 norm for that trace, thus removing the fading of amplitude with
increasing offset.

7 SEISMIC MODELING WITH BSU 128

Vertical motion

Horizontal Motion OFFSET (meters)

OFFSET (meters)(A)

(B)

Figure 53: Synthetic seismograms generated by lamb (see text for model)

7 SEISMIC MODELING WITH BSU 129

7.2 Elastodynamic Solution Near and Far Field (bnfd)
The program bnfd computes synthetic seismograms for a point source in a whole space. While limited in terms
of practical applications (most problems of interest are in more complicated media), the solution does provide
insight into radiation patterns and issues related to the transition from near to far field. The computation is taken
directly from Aki and Richards [1] (equation 4.23, page 73). The program has 9 command line arguments which
are documented in the man pages and the online help. Users are encouraged to review the documentation. The
man page is viewed by typing

man bnfd

and the online help is viewed with the command,

bnfd -h .

The program allows the user to restrict the terms included in the computation, as well as select a specific
component of motion to display. The source is represented by a single equivalent force applied within the medium.
The waves are computed relative to that point where the source is applied. The wavelet (scalar source moment) is
an exponentially decaying sinusoid

Xo(t) = exp(−αt) · sin(2π fc) , (47)

where fc is the center frequency of the source spectrum. The near-field integral is evaluated by Simpson’s rule.
For the convenience of the reader, equation 4.23 is repeated below

ui(x, t) =

1
4πρ

(3γiγ j−δi j)
1
r3

∫ r
β

r
α

τXo (t− τ)dτ

+ 1
4πρα2 γiγ j

1
r Xo
(
t− r

α

)
− 1

4πβ 2 (γiγ j−δi j)
1
r Xo

(
t− r

β

) , (48)

where the P-wave velocity is α , the S-wave velocity is β , the distance from the source point to the observer is r,
the direction cosines are the γi =

xi
r , density is ρ , time is t, particle displacement in the i-direction is ui , x is the

position vector, and δi j is the delta function. The first term in equation (48) is the near-field term, the second, the
far-field P-wave motion, and the last, the far-field S-wave.

7.2.0.1 Example of bnfd The program bnfd uses a design BSEGY data file to set up the details of the synthetic
data set (number of traces, sample interval, layout of source relative to receivers, etc). In this example, we will
use the lambv.seg file from the second lamb example (section 7.1.1.4 above). It does not matter what components
are specified in the design file, since this will be ignored in bnfd (which uses command line arguments to specify
the source and receiver polarizations). The sample shown in Figure 54 is for a horizontal force (in x1 direction)
and observer stations located at the same elevation as the source, extending in a line out to 48 meters. The motion
captured at the observer point is also in the x1 direction (we would not expect any motion in the other directions).
The command used to generate this sample is

bnfd lambv.seg 1 433. 250. 1700. 100. 50. 1 7

The material properties are the same as for the Lamb’s problem example. However, this solution is in a whole
space, and we are observing the computation of body waves, free from any boundary.

The near field dominates at the near offsets, and then declines in amplitude with increasing offset. The listing
file produced by bnfd (in this case bnfdlamb.lst) provides a listing of the relative amplitudes. The S-wave amplitude
is zero in this case, and we are only looking at P- and Near-field waves. A sample of the amplitudes taken from the
listing are:

• Offset=1 meter, Near Field=9.362e-05 P-wave= 2.497e-10

• Offset=24 meters, Near Field=6.772e-09 P-wave=1.040e-11

• Offset=48 meters, Near Field=8.465e-10 P-wave= 5.201e-12

So we can see that we have not yet gone far enough out for the P-wave to match the near field wave amplitude.
The source wavelet in this case had a center frequency of 50 Hz, and a decay rate of 100 per second.

7 SEISMIC MODELING WITH BSU 130

observerforce

OFFSET (meters)

Figure 54: Near and Far Field computations (source in x1, motion in x1 directions). The data have been trace
qualized by the L2 norm of each offset signal to prevent fading of the motion due to amplitude decay.

7.3 Elastic Rayleigh Wave Modeling
7.3.1 Program halfsp

The basic computation is for a Rayleigh wave in a half-space medium. The motion-stress vectors for this type
of problem are easily computed with the BSU program halfsp. Man pages for this program can be viewed in an
x-term with the command,

man halfsp

This program is very basic with only a man page for documentation. The output is a text file listing the half-
space properties at the top followed by 4 columns of the motion stress vector values with depth. To read more on
this topic, see Aki and Richards ([1], chapter 7). The program is run from an x-terminal with a single command:

halsfp

The user is then prompted for the half-space properties (density, P-velocity, S-velocity), and the depth sampling
for the motion-stress vector computations. A typical dialog is as follows:

pm@penguin: halfsp
ENTER RHO,VP,VS
1600,800,100
ENTER FREQ,NZ,Z0,ZEND
40,50,0,20
PHASE VEL= 95.4331

This produces a file, halfsp.tmp, a portion of which is shown below:

HALFSP.F OUTPUT:
RHO=0.1600E+04
MU=0.1600E+08
LAME=0.9920E+09
FREQ=0.4000E+02
P-WAVE VELOCITY=0.8000E+03
S-WAVE VELOCITY=0.1000E+03
RAYLEIGH WAVE PHASE VEL= 95.4331

7 SEISMIC MODELING WITH BSU 131

R1=Horiz. Displacement R2=Vertical Displacement
R3=Horiz. Stress R4=Vertical Stress

DEPTH R1 R2 R3 R4

0.0 0.120E+01 -.219E+01 0.804E+02 0.000E+00
0.4 -.122E+00 -.259E+01 0.834E+08 0.458E+08
0.8 -.439E+00 -.224E+01 0.902E+08 0.495E+08
1.2 -.444E+00 -.175E+01 0.762E+08 0.418E+08
1.6 -.367E+00 -.132E+01 0.592E+08 0.325E+08
2.0 -.283E+00 -.981E+00 0.445E+08 0.244E+08
2.4 -.212E+00 -.722E+00 0.329E+08 0.181E+08
2.8 -.157E+00 -.529E+00 0.242E+08 0.133E+08
3.2 -.115E+00 -.387E+00 0.177E+08 0.972E+07
3.6 -.842E-01 -.282E+00 0.130E+08 0.711E+07
4.0 -.616E-01 -.206E+00 0.946E+07 0.519E+07
4.4 -.450E-01 -.151E+00 0.691E+07 0.379E+07
4.8 -.328E-01 -.110E+00 0.505E+07 0.277E+07
5.2 -.240E-01 -.803E-01 0.368E+07 0.202E+07
5.6 -.175E-01 -.586E-01 0.269E+07 0.148E+07
6.0 -.128E-01 -.428E-01 0.196E+07 0.108E+07
6.4 -.933E-02 -.312E-01 0.143E+07 0.786E+06
6.8 -.681E-02 -.228E-01 0.105E+07 0.574E+06
7.2 -.497E-02 -.166E-01 0.764E+06 0.419E+06
7.6 -.363E-02 -.121E-01 0.558E+06 0.306E+06
8.0 -.265E-02 -.887E-02 0.407E+06 0.223E+06
.
.
.

18.0 -.101E-05 -.340E-05 0.156E+03 0.855E+02
18.4 -.740E-06 -.248E-05 0.114E+03 0.624E+02
18.8 -.541E-06 -.181E-05 0.830E+02 0.456E+02
19.2 -.395E-06 -.132E-05 0.606E+02 0.333E+02
19.6 -.288E-06 -.964E-06 0.443E+02 0.243E+02
20.0 -.210E-06 -.704E-06 0.323E+02 0.177E+02

7.3.2 Rayleigh Wave Dispersion (programs gendis and disper)

The program disper computes Rayleigh wave dispersion curves which can then be input to program waves for
synthetic seismogram computation. The computation is taken directly from Aki and Richards [1] (chapter 7 on
surface waves). Because there are a large number of input variables, the program disper uses a file with namelists.
Since velocity and density are easier values to input than elastic moduli, a helper program is also available, gendis.
Man pages exist for both disper and gendis. From an x-term, type

man gendis

or

man disper .

There is no online help as with other BSU programs. That is DO NOT TYPE:

disper -h

All this will do is create an empty file named -h, and that will be difficult to remove unless you know how to
do it (the problem is the dash). If you have already made this mistake, you can remove the empty file as follows:

rm ./-h

7.3.2.1 Two ways to run disper Program disper is usually run to compute Rayleigh wave dispersion for a
layered earth model. The resulting dispersion curves are written to a file which can be read by program waves to
compute a synthetic seismogram. There is also a listing file, disper.tmp which can be examined for phase velocities
computed at each frequency, for all possible modes up to 9 modes. Octave programs are also generated to plot the
phase velocity dispersion, and even the layered earth model.

The other way to run disper is to examine the above type of run listing file, and choose a phase velocity at
a frequency of interest for a mode of interest. These values can be inserted into the disper.d namelist file for

7 SEISMIC MODELING WITH BSU 132

computation of the motion-stress vectors. In that case, a Octave program will be generated for plotting the vectors.
See section 7.3.5.1 below.

7.3.3 gendis

The program is invoked from the command line

gendis

You will be prompted for the following inputs:

1. Name of output file: This is the file which will be read by disper. Recommend using disper.d for a name.
Limit to 40 characters.

2. Sample rate: Actually, not really a rate, this is the sample interval in seconds when following disper with a
synthetic seismogram computation in waves. It is relevant to the frequency step size (see next parameter).

3. Tmax: This is the maximum time that will be used in the waves synthetic seismogram program. It will affect
the step size in the frequency domain, and will be adjusted slightly so that a radix 2 FFT can be employed.
That is, in the time domain, the number of samples will be a power of 2. The frequency increment will

be ∆ f =
1

N∆t
, where N=number of samples, and ∆t=the sample interval specified by the above parameter.

Also, if you plan on computing a synthetic seismogram, you probably don’t want FFT wrap a round. Thus,
consider your slowest velocity in your model, and the maximum offset of a synthetic which will be computed
in waves. Use a safety factor of 2 (make tmax 2 times larger than the latest arrival on the far offset). What
ever you decide here, USE THE SAME VALUE LATER IN WAVES.

4. Minimum frequency: This is the minimum in Hz. Recommended value is 1, even if you have a geophone
with a higher cut-off frequency in mind. Choose this and the next parameter to give a wider bandwidth
than you think you will need (unless you are not going to compute a synthetic, and only want a plot of the
dispersion curves). The reason is that the waves program computes a scaler source moment (wavelet) based
on this and the next parameter. The wavelet will be minimum phase. Too narrow a bandwidth will give a
very ringy synthetic seismogram.

5. Maximum frequency: Specify in Hz also. Too high a value may lead to an unstable computation, where
too high depends on the model parameters and the inherent difficulty in integrating a stiff equation. Too low
a value will lead to a ringy wavelet if you go on to compute a synthetic with program waves.

6. Maximum mode number, modemx: This is the maximum mode to compute. The limit is 9 modes. For a
fundamental only computation, set to 1.

7. Step size in depth, deltz: Since the propagator matrix method is used, there is little value in using too small
a step size in computing the motion-stress vectors. Too small is defined as being a lot of computations in
each layer. For a layer over a half-space, use the upper layer thickness. For a many layered case, use the
smallest layer thickness. The integration is automatically adjusted to layer boundaries.

There is an option in disper to compute the motion-stress vectors at a single frequency and plot these with
depth. If you are doing that, then a small step size would be appropriate. This type of computation is usually
done after a dispersion curve computation, since you will need to provide a phase velocity for the specific
frequency of interest.

8. Number of control points: This is the number of points in depth where velocities of P-wave, S-wave and
mass density are specified. Linear interpolation based on the choice of depth step size above will create
a layered model. To create layers larger than the step size, more control points are needed. For example,
consider specifying a single thick layer over a half-space. This would require 3 points (as shown in the
gendis manpage). One always starts at depth 0, surface of the earth. For a thick layer over a half-space,
the second control point would be at the top of the next layer, and have material properties equal to the first
control point. The third point would be a very small distance below the second control point, and give the
half-space properties. See the man pages for this example, or later sections below.

7 SEISMIC MODELING WITH BSU 133

9. Layer properties: Actually, these are comma separated quadruplet entries giving the shear velocity (beta),
P-wave velocity (alpha), mass density (rho), and control depth (tops of layers). You will be prompted until
all the control points have been entered (it loops, and you can’t go back).

7.3.3.1 gendis The program gendis is run interactively from an X-terminal. The following is an example and
corresponds to the soil profile shown in figure 55:

enter: name of output file (< 40 char)
disper.d

enter: sample rate
.001

enter: tmax for trace
2.0

enter: minimum frequency
1

enter: maximum frequency
150.

enter: maximum mode #
9

enter: deltz step size
2.

enter: number of control
3

layer(1) enter: beta,alpha,rho,depth(top)
100, 800, 1600, 0

layer(2) enter: beta,alpha,rho,depth(top)
100, 800, 1600, 2

layer(3) enter: beta,alpha,rho,depth(top)
400, 2000, 1700, 2.001
twice npts= 4096
twice tmax= 4.0960
output====>disper.d

7.3.4 showmdl

To illustrate programs in this section, we will continue with the gendis example. Again, a graphical sketch of that
simple layer over a half space model is shown in Figure 55.

D
e
p

th
 (

m
e
te

rs
) 3Vp=800 m/s Vs=100 m/s Density=1600 kg/m

ground surface

half space

0

1

2

3

4

Vp=2000 m/s Vs=400 m/s Density=1700 kg/m3

Figure 55: Simple layer over a half space model used in the gendis man page.

After you have created a namelist file with gendis, you may want to confirm that you have entered the correct
model. Let’s assume the file name is disper.d. The model illustrated in Figure 55 has been used in this example.
From the command line, you would type:

showmdl disper.d

7 SEISMIC MODELING WITH BSU 134

This would produce the following listing. The last 3 lines are not part of the disper.d file, but echo back what
the Lame’s constant and shear modulus compute to in terms of the velocities and densities.

pm@penguin:~$ showmdl disper.d
file: disper.d

&disper
nlay= 3,

rho= 0.1600E+04, 0.1600E+04, 0.1700E+04,
mu= 0.1600E+08, 0.1600E+08, 0.2720E+09,
lame= 0.9920E+09, 0.9920E+09, 0.6256E+10,
zi= 0.0000E+00, 0.2000E+01, 0.2001E+01,

deltz= 2.0000,
modemx=9,
nfreq=610, flo= 0.1000000E+01, delf= 0.24414061E+00, jsmax=300, ksw=0
pvlcty=0.0, pfreq=0.0, zend=100.0,

ofile=’disper.tmp’,
octav1=’phase.m’, octav2=’mat2.m’,
curve=’earth.crv’, /

trimmed deltz= 2.00100

point depth beta alpha rho

1 0.000 100.00 800.00 1600.0
2 2.000 100.00 800.00 1600.0
3 2.001 400.00 2000.00 1700.0

7.3.5 disper

We run disper with the following command,

disper disper.d

The output includes a file, disper.tmp, which lists all the phase velocities for all the modes in the frequency
range requested. In this example, the name of the dispersion curve file is earth.crv, and a Octave file is generated,
phase.m which can be used to plot the dispersion curves. Start a Octave session and type the following in the
Octave text window:

phase;

The resulting plot is shown here in Figure 56. The modes have been annotated in Xfig.

7.3.5.1 Editing the namelist file, disper.d You can edit the disper.d file to make changes, should you wish to
change something, or run a motion-stress vector plot. The showmdl listing augments the contents of the disper.d
file with the layer control points at the bottom of the listing. The shear modulus (mu) and Lame’s constant (lame)
are computed from your velocities and densities.

Note that there are some additional parameters set to zero, pvlcty and pfreq. Also, parameter zend is set to 100
meters maximum depth, arbitrarily. If the first two are set to zero, then a dispersion curve is calculated over the
specified frequency range. You can compute motion-stress vectors at a single frequency by assigning the correct
values to these two parameters. When the namelist file is input to disper, the computed dispersion curve is captured
in a listing, disper.tmp, as well as in a phase velocity Octave program, output as phase.m by default (unless you
change it by editing disper.d).

You compute a dispersion curve by executing the following command at the command line:

disper disper.d

7 SEISMIC MODELING WITH BSU 135

0 50 100 150
50

100

150

200

250

300

350

400

Frequency Hz

P
h
a
s
e
 V

e
lo

c
it
y
 M

/S

Dispersion: Phase Velocity

Fundamental

mode 1 mode 2
mode 3

mode 4

mode 5 mode 6

Figure 56: Phase velocity curves computed for model in Figure 55.

Examination of the output listing file, disper.tmp at a frequency of 40.0390600 Hz will show the following:

40.0390600 | 99.2208411 226.1749195 361.9392410

On this line of output, we see that there are 3 modes possible at this frequency. The phase velocity of the
fundamental mode is 99.2208411 m/s. The highest mode has a phase velocity of 361.9392410 m/s.

We copy disper.d to disper1.d and edit the copied file to compute the fundamental mode motion-stress vectors.
The edited file might look like this:

&disper
nlay= 3,

rho= 0.1600E+04, 0.1600E+04, 0.1700E+04,
mu= 0.1600E+08, 0.1600E+08, 0.2720E+09,
lame= 0.9920E+09, 0.9920E+09, 0.6256E+10,
zi= 0.0000E+00, 0.2000E+01, 0.2001E+01,

deltz= 0.0500,
modemx=9,
nfreq=610, flo= 0.1000000E+01, delf= 0.24414061E+00, jsmax=300, ksw=0,
pvlcty=99.2208411 , pfreq=40.0390600, zend=5.,

ofile=’disper.tmp’,
octav1=’phase.m’, octav2=’mat2.m’,
curve=’earth.crv’, /

Note that the line beginning with pvlcy has been edited, and the deltz value has been decreased to make a better
sampled motion-stress vector plot. With these changes, we re-run disper with this file, and the Octave program
file, mat2.m is created instead of phase.m. We can execute that program by starting a Octave session and executing
mat2.m . From within Octave, we type:

mat2;

Figure 57 shows the plot generated by Octave and the mat2.m program. There have been some additional
annotations drafted to show key points (vanishing stress boundary condition at the surface, top of half space, and
identification of the vertical and horizontal components of motion).

7 SEISMIC MODELING WITH BSU 136

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−5

−4

−3

−2

−1

0

−5

−4

−3

−2

−1

0

Displacement Stress

Motion Stress Vector (H and V)Motion Stress Vector (H and V)

D
e
p
th

 (
m

)

x106

R3

R4

R2

R1

(A) (B)

−5.0 0.0 +5.0 +10.0 +15.0 +20.0

Figure 57: Motion-stress vectors for simple layer over a half space model of Figure 55. A) Displacement vectors,
B) Stress vectors. Horizontal motion is R1, vertical motion is R2. Horizontal stress is R3, vertical stress is R4.

7 SEISMIC MODELING WITH BSU 137

7.3.6 Synthetic Rayleigh Wave Seismograms (waves)

The program waves can be used to generate either a vertical or horizontal in-line component synthetic seismogram.
Only the Rayleigh waves are computed (no body waves). The program waves is a programming of the equations
found in Aki and Richards ([1] chapter 7). Details on the programming are also found in Michaels [8]. The use of
synthetic Rayleigh wave seismograms is presented in Michaels [14].

IMPORTANT You need to run program disper before running this program since it needs the results of
the dispersion computation. Program waves will compute group velocities and seismic traces in BSU’s BSEGY
format.

7.3.6.1 genwav Program genwav is a helper program that generates a namelist file to be input to program
waves. Run from an x-term, the program prompts the user for inputs which include descriptions of the simulated
source (spectrum, moment tensor), and the simulated receiver array. Other documentation beyond what follows
can be found in the wave man page. A description of the dialog follows:

1. Name of namelist file: This is limited to 40 characters, suggest using waves.d.

2. Name of dispersion curves file: The default from disper is earth.crv. This name is defined in the disper.d
file input to program disper.

3. Near offset: This is the nearest geophone offset from the source in meters.

4. Number of receivers (nrec): This is the number of geophones deployed in the simulation.

5. Minimum group velocity expected: This is used to give a suggestion for the next parameter, tmax. It is
more of a warning, since you must choose a sample interval and tmax that produce the exact same frequency
spacing as was used in disper. The warning is an attempt to avoid a synthetic with FFT wrap-a-round which
would result if the combination of maximum offset and record time would result in a wave running off the
bottom of the record.

6. Sample rate (fsamin): This really is the sample interval in seconds.

7. Frequencies Hz (fmin, fmax): This defines the bandwidth of the simulated source. Should be the same
as used in the disper run. Can be narrower than disper, but not broader (the curves file has only as many
frequencies as were generated in disper.

8. Maximum mode: This sets the maximum mode number to be included. You can edit the namelist file later
to change this, even doing specific mode simulations (as long as they were computed in disper).

9. Plot switch, ksw: This program selects the type of dispersion plots to be generated for dispersion. A
value of zero gives velocity vs. frequency plots (phase and group velocity). A value of unity will produce
wavenumber vs. frequency plots.

10. Plot format: A value of zero outputs Octave programs for dispersion plots (RECOMMENDED). The alter-
native is Maple. If you choose Maple, your mileage may vary depending on changes that may have occurred
to Maple.

11. Component of motion (irvsel): The output options are 0=Vertical, 1=Radial component of motion in the
output seismic traces. This is meant to simulate either vertical component or in-line radial component
geophones.

12. Source depth: This is the depth of the simulated source below the assumed horizontal ground surface.

13. Diagonal elements of moment tensor: If you want to simulate a non-diagonal tensor, you can edit the
namelist file, waves.d. A buried explosive source would use 1,1,1 here. A vertical impact source at the sur-
face would use 0,0,1. This tensor controls the radiation pattern of the source, and combined with the source
frequencies defines your source. The source wavelet (scalar source moment) is computed as a minimum
phase wavelet, and is available in file m0.mat generated from the waves run. The wavelet at the source in file
m0.mat is a text file, two columns, sample time and wavelet amplitude.

7 SEISMIC MODELING WITH BSU 138

The example presented in this section will use the model of Figure 55 and the dispersion curves that were
produced (earth.crv). The source will be a simulated vertical impact at the surface. The following is a log of the
interactive run of genwav:

genwav
enter name of namelist file (40 char)
Example: waves.d

waves.d
enter name of dispersion curve file
(this is file from disper.f)
Example: earth.crv

earth.crv
enter near offset: xnear

1
enter group interval: delx

1
enter number of receivers: nrec

48
enter minimum group velocity expected

100
RECOMMENDED minimum tmax= 0.9600
enter: maximum trace time, tmax

2.0
enter: sample interval (seconds), fsamin

.001
enter frequencies: fmin, fmax

1, 100
enter maximum mode to include

9
enter ksw switch 0=c plot, 1=k plot

0
enter type of plot format, mapmat
0=octave (Matlab) 1=scilab

0
enter Output option 0=Vertical 1=Radial

0
enter source depth

0
enter (3) diagonal elements, moment tensor

0,0,1
Padded Radix 2 tmax= 4.0960
Number of points in signal= 4096

--
.......Frequency interval= 0.24414061
NOTE: Frequency Interval MUST MATCH DISPER OUTPUT
WAVES will output signal length = 1.0/delf
IF MISMATCHED: CHANGE sample rate in WAVES

or RERUN DISPER
--

Number of frequencies= 409
output in =====>waves.d

7 SEISMIC MODELING WITH BSU 139

After running genwav, we have the following waves.d namelist file.

&waves
ksw= 0, stepz=20,
modes=1,2,3,4,5,6,7,8,9,
fmin= 10.0000, fmax= 100.0000,
fsamin= 0.00100,
curve=’earth.crv’,
mapmat=0,
matlb1=’matc.m’, scilb1=’matc.sci’,
matlb2=’matu.m’, scilb2=’matu.sci’,
irvsel=0,
ofile=’waves.tmp’, /
&source
tm= 0.0, 0.0, 0.0,

0.0, 0.0, 0.0,
0.0, 0.0, 1.0, /

sz= 0.00, sy=0.00, sx=0.00, /
&recvr
nrec=48,
rz=48*0.0,
ry=48*0.0,

rx= 1.000, 2.000, 3.000, 4.000, 5.000,
6.000, 7.000, 8.000, 9.000, 10.000,

11.000, 12.000, 13.000, 14.000, 15.000,
16.000, 17.000, 18.000, 19.000, 20.000,
21.000, 22.000, 23.000, 24.000, 25.000,
26.000, 27.000, 28.000, 29.000, 30.000,
31.000, 32.000, 33.000, 34.000, 35.000,
36.000, 37.000, 38.000, 39.000, 40.000,
41.000, 42.000, 43.000, 44.000, 45.000,
46.000, 47.000, 48.000,

/

Note that we have selected up to 9 modes, used a slightly narrower bandwidth than is available from the disper
run, chosen a vertical impact source (matrix tm=) at the surface (sz=0.0), and a sample interval of .001 seconds.
There are 48 geophones at the surface (rz=0.0) that extend in the x-axis direction along which the simulated
Rayleigh wave will propagate. A vertical component geophone response is selected with irvsel=0. A listing file
logging the run will be called waves.tmp. Plot programs will be in Octave format (mapmat=0). These plots will be
in terms of velocity vs. frequency (ksw=0). There will be two dispersion plot programs, matu.m (group velocity)
and matc.m (phase velocity, as from the disper run). A trace equalized plot of the synthetic seismogram is shown
in Figure 58

The group velocity plot is generated in a Octave session. Start Octave, and then in the Octave window, one
types:

matu;

Figure 59 shows the group velocity plot. The corresponding phase velocity curves can be plotted by executing
matc.m from within Octave. This will produce a plot similar to the plot in Figure 56, but limited to match the
frequency range in the actual waves run that produced group velocities of Figure 59.

7.3.6.2 Editing the waves.d file One can edit the waves.d file, perhaps after copying it to a new file with a
different name. For example, if you wish to compute only the fundamental, you would change the modes line to
the following

modes=1,0,0,0,0,0,0,0,0,

7 SEISMIC MODELING WITH BSU 140

0 10 20 30 40 50
0

200

400

600

800

Offset [amp=8.00E+00 percnt=200 bequwavV.seg]

T
im

e
 (

m
s
)

Vertical Component Rayleigh Waves (waves.d)

Figure 58: Plot of vertical component motion, trace equalized to remove amplitude decay with offset. This permits
viewing the waveform changes with offset. Compare this to the horizontal motion in Figure 60.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Frequency Hz

G
ro

u
p

 V
e

lo
c
it
y
 m

/s

Dispersion: Group Velocity

mode 1
mode 2

mode 3
mode 4

Fundamental

Figure 59: Group velocities are available by plotting matu.m from within Octave.

7 SEISMIC MODELING WITH BSU 141

To compute only the second mode above the fundamental, the modes line would be as follows:

modes=0,0,3,0,0,0,0,0,0,

You can change the source moment tensor, the location or number of geophones, and their orientation. Just
about anything can be edited. However, you can not ask for more frequencies than were computed in the disper
run, since you are limited to those frequencies in the earth.crv file. For example, let’s just edit the file to compute
the in-line horizontal component of motion. This would be like deploying horizontal phones aligned with the
x-axis (axis of propagation). The new file, wavesR.d might look like this:

&waves
ksw= 0, stepz=20,
modes=1,2,3,4,5,6,7,8,9,
fmin= 10.0000, fmax= 100.0000,
fsamin= 0.00100,
curve=’earth.crv’,
mapmat=0,
matlb1=’matc.m’, scilb1=’matc.sci’,
matlb2=’matu.m’, scilb2=’matu.sci’,
irvsel=1,
ofile=’waves.tmp’, /
&source
tm= 0.0, 0.0, 0.0,

0.0, 0.0, 0.0,
0.0, 0.0, 1.0, /

sz= 0.00, sy=0.00, sx=0.00, /
&recvr
nrec=48,
rz=48*0.0,
ry=48*0.0,

rx= 1.000, 2.000, 3.000, 4.000, 5.000,
6.000, 7.000, 8.000, 9.000, 10.000,

11.000, 12.000, 13.000, 14.000, 15.000,
16.000, 17.000, 18.000, 19.000, 20.000,
21.000, 22.000, 23.000, 24.000, 25.000,
26.000, 27.000, 28.000, 29.000, 30.000,
31.000, 32.000, 33.000, 34.000, 35.000,
36.000, 37.000, 38.000, 39.000, 40.000,
41.000, 42.000, 43.000, 44.000, 45.000,
46.000, 47.000, 48.000,

/

What has changed? We change the orientation of the receivers by setting irvsel=1. We can also change the
name of the listing file to wavesR.tmp. All else remains the same. The program will automatically change the name
of the output BSEGY file. These names are hardwired. For vertical component synthetics, the name is wavV.seg,
and for horizontal component data wavR.seg. A trace equalized plot of the synthetic seismogram is shown in
Figure 60.

7.3.6.3 Signal Amplitudes The computed synthetic seismograms are for particle displacement. Thus, they
are not what one would see with a velocity geophone (which measures particle velocity). The source wavelet is
captured in a text file from the waves run. The file is named m0.mat. It consists of 2 columns, record time and
signal amplitude. This wavelet is filtered by the computed Rayleigh wave earth response and computed radiation
pattern of the source moment tensor to produce the synthetic.

The actual spectral bandwidth will be less than is commonly defined (common definitions include the -3dB or
-6dB point for example). We can plot the wavelet and its amplitude spectrum by running the Octave procedure,
m0.m, generated by waves. For example, a brief listing of the generated (m0.m 7.3.6.3) file is shown below:

7 SEISMIC MODELING WITH BSU 142

0 10 20 30 40 50
0

200

400

600

800

Offset [amp=8.00E+00 percnt=200 bequwavR.seg]

T
im

e
 (

m
s
)

Horizontal Component Rayleigh Waves (wavesR.d)

Figure 60: Plot of horizontal component motion, trace equalized to remove amplitude decay with offset. This
permits viewing the waveform changes with offset. Compare this to the vertical motion in Figure 58.

m0.m

clear
// generated by waves.F90 <paulmichaels@boisestate.edu>
// scalar source moment, plot wavelet

data=[...
0.00000 0.1145539E-06 ;...
0.00100 0.1769859E-05 ;...
0.00200 0.1318357E-04 ;...
0.00300 0.6318095E-04 ;...

* *
* *
* *

1.02100 -0.1863727E-42 ;...
1.02200 -0.2017870E-42 ;...
1.02300 -0.2087935E-42 ;...

];
tm=data(:,1);
mo=data(:,2);
Mo=fft(mo);
npts=length(mo);
k=npts/2;
dt=tm(2)-tm(1);
frq=0:npts-1;
frq=frq/(npts*dt);
subplot(211)
plot(tm,mo,’-b’,’linewidth’,2);
title(’Rayleigh Wave source wavelet’);
xlabel(’Time (s)’);
grid on;
subplot(212)
plot(frq(1:k),abs(Mo(1:k)),’-r’,’linewidth’,2)
title(’Amplitude Spectrum’);
xlabel(’Frequency Hz’);
grid on;

7 SEISMIC MODELING WITH BSU 143

The resulting plot is shown in Figure 61. Note, that the bandwidth (by common definitions) is less than the
values specified by fmin and fmax.

0 0.05 0.1 0.15 0.2 0.25
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Frequency Hz

Rayleigh Wave source wavelet

Amplitude Spectrum

Figure 61: Wavelet plot from Octave program m0.m. Note that the bandwidth is less than conventional definitions
would imply. When you set (fmin,fmax) in waves.d, you are basically setting nearly the complete limit of frequen-
cies. The program reduces the bandwidth to approximately 4 f min and f max/2 . This figure has been enlarged to
show detail with the axis command.

7.3.6.4 From Displacement to Velocity If you wish to see waveforms similar to what a velocity geophone
would produce, you can use BSU to differentiate the seismic signals. The program to use would be bdif. For
example, one could execute the following:

bdif wavV.seg .1

This would produce the result shown in Figure 62. It is a bit hard to compare the displacement to its derivative
at this scale, so we can plot the first (near offset) signal from both data sets (wavV.seg and bdifwavV.seg). We issue
the following commands:

bplt bdifwavV.seg 1 1 0 1 1 0 .2 1 .4 200 3. 3.
bplt wavV.seg 1 1 0 1 1 0 .2 1 .001 200 3. 3.

Figure 63 shows a comparison between the differentiated and original vertical component near offset signals.
The differentiation computed in program bdif permits a stability factor since the program uses a bi-linear transform
method that places a pole at the Nyquist frequency. In the Z-transform plane, the pole moves from Z = −1 to
Z =−(1+ stab), where stab is the stability factor. In the example above, we set stab = 0.1. If the data have been
filtered to remove any signal at and near the Nyquist frequency, then the stab factor can be small or zero. However,
even the slightest amount of noise at the Nyquist frequency will be magnified without a stab factor. Typically, I
choose 0.1 < stab < .5.

Bilinear Transform derivative A reference for the theory of the bi-linear method of filter design can be
found in Gold and Rader [5]. Mathematically, the Z-transform for the derivative is given as

Y (Z) =
2
∆t
· (1−Z)
((1+ stab)+Z)

·X(Z) (49)

where ∆t is the sample interval, X(Z), is the input signal Z-transform, and Y (Z) is the output (ie. derivative of X),

7 SEISMIC MODELING WITH BSU 144

0 10 20 30 40 50
0

200

400

600

800

Offset [amp=8.00E+00 percnt=200 bequbdif.seg]

T
im

e
 (

m
s
)

Differentiated Vertical Rayleigh Wave Synthetic

Figure 62: Plot of file bdifwavV.seg, differentiated wavV.seg simulates what a velocity geophone might see. Com-
pare to Figure 58.

Z-transform. Feedback is used in an auto-regressive-moving-average (ARMA) operator to realize this equation in
the time domain:

y j =

(
2
∆t
·
(
x j− x j−1

)
− y j−1

)
/(1+ stab) . (50)

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

Trace Number [amp=1.00E-03 percnt=200 wavV.seg]

T
im

e
 (

m
s
)

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

Trace Number [amp=4.00E-01 percnt=200 bdifwavV.seg]

T
im

e
 (

m
s
)

peak motion on displacementzero crossing on derivative

Particle Velocity Particle Displacement

Figure 63: Plot of file bdifwavV.seg, differentiated wavV.seg simulates what a velocity geophone might see. Only
near offset signals are shown for easier comparison.

7.3.6.5 Pitfalls in setting parameters The output dispersion curves computed by disper, typically saved in
a file named earth.crv, contains rows, each row for a computed frequency. The other elements in the row are
wavenumbers for each mode. This frequency increment is set by the aperture implied by file disper.d. In running
gendis, the aperture questions are the first two (sample interval and tmax). The frequency step size is ∆ f =

7 SEISMIC MODELING WITH BSU 145

1/(N∆t) = 1/tmax, where ∆t is the sample interval. The program waves must use the exact same frequency step
size. When running genwav, answer the question for maximum trace time, tmax, using the same value as when
running gendis. The sample rate question (really sample interval) should also be answered using the same value as
with gendis. This will guarantee that the two programs are consistent.

However, even if one does specify the same aperture, there still may be a problem with the implied model.
Program disper uses parameter deltz to subdivide intervals between control points with layers. The smaller deltz,
the more layers. In the above example, a single layer over a half space is forced using three control points. The
first two (depth=0 and depth=2.0) have the same material properties, making that entire interval produce the same
result regardless of the deltz. The discontinuity is represented by a third control point just slightly below the
second (at depth=2.001). While abrupt, a finite interval exists between 2.000 and 2.001 meters depth. When
running waves, a smaller interval than deltz is required to compute the energy integrals which yield group velocity
and the lagrangian. The smaller interval is set by a computed “minimum wavelength”, subdivided by namelist
parameter, stepz. If stepz is too large, the implied depth interval (analogous to deltz) may actually subdivide the
discontinuity into additional layers. The minimum wavelength is given by

λ =
βminimum

fmax
(51)

This means that changes, like extending the maximum frequency computed, may lead to a resampling of the
discontinuity into layers. This problem presents itself as a glich in the group velocities and an increase in the
lagrangian. The corrective action is to edit the waves.d namelist file, decreasing the stepz parameter. Alternatively,
one may wish to re-run disper making the discontinuity thinner. Figure 64 illustrates the problem in (B).

0 10 20 30 40
0

100

200

300

400

Frequency Hz

G
ro

u
p
 V

e
lo

c
it
y
 m

/s

Dispersion: Group Velocity

0 10 20 30 40
0

100

200

300

400

Frequency Hz

G
ro

u
p
 V

e
lo

c
it
y
 m

/s

Dispersion: Group VelocityModel Depths disper.d: 0, 2.00, 2.0001

(A)

NOTE:

(B)

Glitches
Note:

Model Depths disper.d 0, 2.00, 2.05

Figure 64: (A). Correct waves computation of dispersion. (B). Illustrates too large a depth difference between top
and bottom of the discontinuity. The solution is to make the discontinuity more abrupt in disper.d or decreasing
stepz in waves.d to remove the glitches.

8 HYDRAULIC CONDUCTIVITY FROM SEISMIC DAMPING 146

8 Hydraulic Conductivity from Seismic Damping
The use of the Kelvin-Voigt (KV) representation has long been a standard in geotechnical engineering and soil
dynamics. In the vibrator perspective, it consists of a mass, spring, and dashpot with the spring and dashpot in
parallel configuration. Figure 65-A shows both the vibrator and wave perspectives of the KV model. The KV
model is limited by the single mass, making it unable to represent multi-phase media like a water saturated sand.
In the case of a water saturated sand, there are two masses (solid frame, pore fluid).

c

k m

Vibrator

Wave Assemblage

(A) Kelvin Voigt (KV)

kf
mf mw

frame water

d

permeability

(B) Kelvin Voigt Maxwell Biot (KVMB)

Vibrator

Wave Assemblage

Figure 65: (A). Kelvin-Voigt (KV) representation for both vibrator and wave assemblage. (B) Kelvin-Voigt-
Maxwell-Biot (KVMB) representation.

Building on the work of others, it became apparent that the ideas of Maxwell and Biot could be combined to
produce an alternative model with two masses that would produce vibratory behavior close to from the KV model
(Michaels [13]). This alternative representation is the Kelvin-Voigt-Maxwell-Biot (KVMB) model shown in 65-B.
The two masses represent the solid frame and the fluid (typically water, but could be any fluid with a viscosity).
The dashpot can be represented by a collection of conduits for the fluid to move relative to the solid frame. While
the model based on parallel tubular pores within a solid mass is unlikely to be a true image of a water saturated
soil, it is capable of capturing the behavior of real granular water saturated media when excited by seismic forces.

Some questions can not be addressed by the KV model. Consider, for example, this question:

Should seismic damping increase or decrease with an increase in hydraulic conductivity?

The problem is that there is no place for permeability in the KV model. It turns out that neither is likely to be the
only answer. Once one introduces a mechanism to capture permeability or hydraulic conductivity for a specific
fluid into the model, the question can be addressed. The KVMB model, on the other hand, introduces permeability
and fluid viscosity through the dashpot placed between the two masses. The result is the ability to capture both
coupled and uncoupled possible motions. This results in behavior that answers the question with both alternatives
being true.

The dashpot provides viscous friction. Friction can be low when the soil is very tight (low permeability) and
the motion of fluid and frame are largely coupled. That is, they move together. Low levels of friction are also
possible in a highly permeable soil, one with large pore spaces that permit easy flow between frame and fluid.
This is the uncoupled case. The KVMB model predicts that there will be an intermediate place between these two
extremes where friction is greatest, and this produces a peaked response.

The metric chosen to represent viscous friction is the KV damping ratio. This is possible even though that
representation can not explain the friction as the KVMB model does. There is a mapping between the two repre-
sentations because the KVMB model predicts behavior very close to that of a true KV vibrator. The mathematics
are developed in Michaels [13] and involve dropping the real eigenvalue of the KVMB system and relating the two
complex KVMB eigenvalues to the only two eigenvalues of the KV system.

With this mapping, the body of KV based measurements can be related hydraulic conductivity. Be these
measurements from vibratory experiments (like resonant column) or from shear wave propagation of dispersion
and propagation decay, the mapping provides a way to connect them to permeability of the medium (once the
fluid viscosity and porosity are known). Knowledge of porosity is required since it splits the mass into the two
components, fluid and frame.

8 HYDRAULIC CONDUCTIVITY FROM SEISMIC DAMPING 147

8.1 Mapping KVMB to KV
Program kvKVMBscan.m illustrates the effect of mass ratio between solid frame and a fluid. In Figure 66, the
viscosity for water is employed. The most friction results when the masses are equal (not a likely situation given
the difference in density of most grains and water). The larger the frame to fluid mass ratio, one would expect the
lower the porosity.

1e−5 1e−4 1e−3 1e−2 1e−1 1e+0 1e+1 1e+2 1e+3
1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

D
a

m
p

in
g

 R
a

ti
o

 K
V

Equivalent KV Damping Ratio

Damping Ratio KVMB

M
f/M

w
=1

M
f/M

w
=10

M
f/M

w
=1000

M
f/M

w
=100

C
O

U
P
LE

D

U
N

C
O

U
P
LE

D

Figure 66: Octave program, kvKVMBscan.m, can be run to illustrate the effects which largely depend on porosity.
Shown are cases for different mass ratios of solid frame and pore fluid.

The reader should note that damping ratio in the KVMB context spans a very different range than the traditional
KV damping ratio. This is true despite the fact that the same formula is used for both representations. As explained
in Michaels [13], there is a problem in deciding what mass to use in the formula for damping ratio when considering
the KVMB case. Recall, damping ratio is given by:

δ =
D

2
√

K ·M
(52)

where D is damping, K is spring constant, and M is mass. The program uses the combined mass of fluid and frame
since most real soils will have permeabilities on the coupled side of the curve.

8.2 KV Damping Ratio vs Hydraulic Conductivity
The Octave program, kdKVMBscan.m, permits a view of the mapped KV damping ratio as a function of hydraulic
conductivity. The symbol, Kd, is used in this discussion to represent hydraulic conductivity (units m/s). Any good
text on soil mechanics can be reviewed for the difference between absolute permeability and hydraulic conductivity.
Permeability (units m2) is a concept without context of fluid present. The concept of hydraulic conductivity adds
the context of fluid viscosity. Thus, figures showing Kd on an axis are for a specific fluid present, and this is hard
wired to water and it’s viscosity.

Figure 67 shows two alternative ways to plot the representation. Hydraulic conductivity is the horizontal axis
in (A), and an effective “pore diameter” in mm is shown in (B). The curves are plotted for 15 Hz shaking.

8 HYDRAULIC CONDUCTIVITY FROM SEISMIC DAMPING 148

1e−3 1e−2 1e−1 1e+0
1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

Pore Dia (mm)

D
a
m

p
in

g
 R

a
ti
o
 K

V

Equivalent KV Damping Ratio

n=0.3
0 1

5 H
z

n=0.1
0 1

5 H
z

n=0.4
5 1

5 H
z

1e−6 1e−5 1e−4 1e−3 1e−2 1e−1
1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

D
a
m

p
in

g
 R

a
ti
o
 K

V

Equivalent KV Damping Ratio

Hydraulic Conductivity m/s

n=0.1
0 1

5 H
z

n=0.30 15 Hzn=0.45 15 H
z

(A) (B)

UNCOUPLEDCOUPLED

COUPLED

Figure 67: Octave program, kdKVMBscan.m, can be run to illustrate the effects which largely depend on porosity
and frequency of shaking. Shown are the case for 15 Hz shaking. The user can choose a horizontal axis of either
(A) hydraulic conductivity (m/s), or (B) “pore diameter (mm)”

As frequency increases, the curves would shift to the left. Frequency of shaking will be explored in the next
subsection. The less permeable a soil is, the more rapidly it must be shaken to stimulate fluid motion with respect
to the frame, and it is the relative motion that produces the friction. Recall that friction is measured by damping
ratio. This relationship with frequency is why shear waves are dispersive in a viscous medium.

8.3 Frequency and Hydraulic Conductivity
The Octave program fqKVMBscan.m presents the model’s representation of a soil’s dynamic behavior under dif-
ferent shaking frequencies. For the case of 30% porosity, Figure 68 shows that increasing hydraulic conductivity
(Kd) should produce more friction as represented in the KV damping ratio when the pore fluids are coupled to the
frame.

1e−1 1e+0 1e+1 1e+2 1e+3 1e+4
1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

D
a

m
p

in
g

 R
a

ti
o

 K
V

Equivalent KV Damping Ratio

n=0.30 Kd=0.0600
n=0.30 Kd=0.0020

n=0.30 Kd=0.0100

Frequency Hz

UNCOUPLED

COUPLED

Figure 68: Octave program, fqKVMBscan.m, can be run to illustrate the relationships possible between hydraulic
conductivity and KV damping ratio, the metric for viscous friction.

Interestingly, when one looks at uncoupled behavior, the reverse is true. Increasing permeability decreases the
KV damping ratio, and there is less friction at those high frequencies.

8 HYDRAULIC CONDUCTIVITY FROM SEISMIC DAMPING 149

8.4 Inverting Stiffness and Damping for Hydraulic Conductivity
Octave program KD4kvmb.m can be used to invert values of stiffness and damping to hydraulic conductivity. For
example, in a down-hole shear wave transmission survey, one can measure body wave dispersion and amplitude
decay with distance to obtain values for stiffness and damping. The procedure to invert velocity dispersion and
amplitude decay is detailed in Michaels [10]. The result of the inversion are two coefficients of the viscoelastic 1D
wave equation (beam divergence is corrected for in the process). The wave equation is a 3rd order PDE:

∂ 2u
∂ t2 =C1

∂ 2u
∂ z2 +C2

∂ 3u
∂ t∂ z2 (53)

where C1 is stiffness (m2/s2) and C2 is damping (m2/s). The ratio C2/C1 yields relaxation time in seconds. In
equation 53 time is represented by t and particle displacement by u. Distance in the direction of wave propagation
is z. Figure 69 shows an example run assuming shaking at 12 Hz and a porosity of 25%. Note that if the value of C2
is so large compared to C1, that it produces a KV damping ratio that falls above the peak of the curve, no solution
is possible. In such a case, one may re-evaluate all the assumptions. When deciding on a likely solution from the
two possible, most soils will fall on the coupled side of the curve, making this example solution of Kd = .0122m/s
the more likely one.

1e−6 1e−5 1e−4 1e−3 1e−2 1e−1
1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

D
a
m

p
in

g
 R

a
ti
o
 K

V

n=0.25 12 Hz

Hydraulic Conductivity m/s

Solutions for C1=10000 C2=5

Kd=.012 m/s

Kd=.092 m/s

Wave KV Damping Ratio =.01885

Figure 69: Octave program, KD4kvmb.m prompts the user for porosity (n), stiffness (C1), damping (C2), frequency
of shaking and related uncertainties. Then when run, a display of the solution is given in a message box. Also
show is the graphical image of the process. The C1 and C2 values produce a KV damping ratio that is represented
by the horizontal line that intersects the KVMB to KV curve. The two intersections are the solution.

Are these predictions accurate? No, of course not. But they are a starting point in estimating hydraulic con-
ductivity from shear wave measurements. While the predicted behaviors are likely correct in terms of how real
soils behave, real soils are far more complex, pore spaces are not cylindrical tubes, and fluid flow is not always
laminar. In the context of granular soils, these tools may be helpful in mapping soil units, their permeabilities, and
predicting levels of damping that might occur when exposed to seismic waves.

9 SEISMIC INTERFEROMETRY 150

9 Seismic Interferometry
The following is extracted from the Running_BSU-3.0.3.pdf document. Cross correlation is often used to study
passive sources. Typical applications will often capture signals radiated from vehicle traffic or other “noise”
sources. The approach can also be used with active sources. The following codes have been added to BSU-3.0.3
to work with this type of data.

• BCOR 9.0.1 Cross correlate a selected trace in a shot gather with all other traces in that gather.

• BIMG 9.0.2 Cross correlates traces in a shot gather by relative offsets. Output is sorted by offset between
pairs, near to far combinations.

• GENBIMG 9.0.3 Helper program that generates a BASH script, “gobimg” that calls BIMG. Correlation
windows are defined over time and range.

9.0.1 BCOR

If used, it will likely be to study a data set in terms of satisfying assumptions. The user selects one trace from a
gather of traces and cross correlates that trace with all other traces.

bcor infile1 itrace t1 t2 tlagmx

infile1: name of input file #1
itrace: number of trace to correlate with others
t1: =start time of cross correlation gate (sec.)
t2: =end time of cross correlation gate (sec.)
tlagmx: =maximum cross correlation lag time (sec.)

EXAMPLE:
bcor DATA.seg 1 40. 60. 4.

These data (Figure 70) are sampled from the publication [24]. They are recorded from a line of geophones
along a road. Trace 1 is correlated with the other traces for a maximum lag of 4.0 seconds (actually ±2.0 seconds.
Figure 71 shows the cross correlation for both positive and negative lags. That is, examine trace 1 on far left. That
is an auto correlation of the first trace. The time of 2.0 seconds is essentially zero lag.

9 SEISMIC INTERFEROMETRY 151

0 50 100 150 200
40

45

50

55

60

Offset [amp=4.00E+00 percnt=200 bequDATA.seg]

T
im

e
(s

ec
on

ds
)

Figure 70: A section of data from 40 to 60 seconds. Note the vertical time scale is different than that in Figure 71.
The large amplitude slow trend (approximately 14 km/hr) in the lower left appears to be a motor vehicle while the
remaining events appear to be waves propagating in the soil (approximately 150 to 200 m/s).

0 50 100 150 200
0

1

2

3

Offset [amp=4.00E+00 percnt=200 bequbcor.seg]

T
im

e
(s

ec
on

ds
)

Figure 71: BCOR: Cross correlation of Figure 70 data from 40 to 60 seconds. Zero lag is at 2.0 seconds. The event
starting at 2.0 seconds on the left appears to present a horizontal velocity of about 150 m/s.

9 SEISMIC INTERFEROMETRY 152

9.0.2 BIMG

This program creates a pseudo shot gather by mixing cross-correlated traces by offset (measured in trace spacings).
Thus, it works best if the trace spacing is uniform for the most part. The smallest offset would be 1 trace spacing,
the furthest the near to far trace (but that will only give one instance). Average group interval computed, assumed
all traces are equally spaced. Acausal output is for waves propagating in one direction, causal section for waves
propagating in the opposite direction (see output file bimgxxxx.seg). The acausal and causal portions are combined
without any weighting in second output file (see file BIMGxxxx.seg). Assumes all sources in line with geophones
(no azimuthal corrections for apparent velocity). Likely use is traffic noise acquired along a road.

bimg infile1 t1 t2 tlagmx jnear jfar

infile1: name of input file #1
t1: =start time of cross correlation gate (sec.)
t2: =end time of cross correlation gate (sec.)
tlagmx: =maximum cross correlation lag time (sec.)
jnear: = near correlation offset (trace spacings)
jfar: = far correlation offset (trace spacings)

EXAMPLE:
bimg DATA.seg 0. 100. 4. 1 33

0 20 40 60 80 100
0

1

2

3

Offset [amp=4.00E+00 percnt=200 bequbimg.seg]

T
im

e
(s

ec
on

ds
)

Figure 72: BIMG: Data from Figure 70, time gate 0 to 100 seconds processed for trace offsets from 1 to 33. A
larger time gate improves the statistics of the stack. The average spacing is 3 meters per trace. Only half of the
available offsets are used to build up the stack. Note the time scale is 0 to 4.0 seconds with zero lag at 2.0 seconds.

9 SEISMIC INTERFEROMETRY 153

0 20 40 60 80 100
0.0

0.5

1.0

1.5

Offset [amp=4.00E+00 percnt=200 bequBIMG.seg]

T
im

e
(s

ec
on

ds
)

Figure 73: BIMG: Output file BIMGdata.seg mixes both causal and acausal arrivals. Note that the time scale is 0
to 2.0 seconds with zero lag at 0 seconds. The interval from 2 to 0 seconds in Figure 72 is time reversed and mixed
with the 2 to 4 seconds interval. This mixes both directions of arrival.

9.0.3 GENBIMG

BENBIMG generates a bash script which makes calls to BIMG (9.0.2). Each call to BIMG is for a time-space
sliding window that moves over a large data set. User specifies a window length (tgate) and time shift forward.
The maximum 2 sided cross correlation lag is also required on the command line. Program BIMG is intended
to process passive sourced data. It is assumed that the sources are in line with the geophone array (no azimuth
corrections to correct for apparent velocities). There is a man page, but no help with the “-h” option. Rather, if
only the command is issued, the following help is provided:

USAGE: genbimg filename tstart tend tstep tgate tlagmx trace1 traceN jnear jfar mix

filename = input file name
tstart = start time (float, seconds) of processing
tend = end time (float, seconds) of processing)
tstep = time shift forward with sliding window (float, seconds) of processing)
tgate = length in time of sliding window (float, seconds)
tlagmx = 2 sided maximum correlation lag (float, seconds)
trace1 = first trace to process (int)
traceN = last trace to process (int)
jnear = near correlation separation (int, traces)
jfar = far correlation separation (int, traces)
mix = mean mix length (0=no mix) (int, traces)
ABORT
you only have 1 arguments on command line
argv[0] = genbimg

If less than all 11 command arguments is given, then the ABORT message will be given, alerting the user to
additional command line arguments are required. The mix argument is used to attenuate broadside arrivals. If it is
not needed, set mix to 0. However, as will be shown in the following example, a mix of 3 helps a great deal. When
a mix is used, additional calls to the program BMIX (??) are made at the end of the script.

9 SEISMIC INTERFEROMETRY 154

EXAMPLE:
genbimg DATA.seg 0 100. 20. 20. 4. 1 66 1 30 0

The output is:

SUCESS Now you run the output script
Output Bash Script ==> gobimg
(type gobimg) ==> images: stak.pdf and STAK.pdf

==> data: stak.seg and STAK.seg

The output script should be executable in Linux. It will look like this:

#!/bin/bash
Input File = DATA.seg
Start Time = 0.00 sec.
End Time = 100.00 sec.
Time Step (moveups) = 20.00 sec.
Time Gate = 20.00 sec.
Max Lag = 4.00 sec.
First Trace Number = 1
Last Trace Number = 66
Near correlation trace spacing = 1
Far correlation trace spacing = 30
mix mean mix length in traces = 0
#
echo gate: 0.0 20.0
bedt DATA.seg 0.000000 20.000000 1 66 1 0 >/dev/null
brdc bedtDATA.seg 1 >/dev/null
bimg brdcbedt.seg 0. 20.000000 4.000000 1 30 >/dev/null
mv bimgbrdc.seg stak.seg
mv BIMGbrdc.seg STAK.seg
echo gate: 20.0 40.0
bedt DATA.seg 20.000000 40.000000 1 66 1 0 >/dev/null
brdc bedtDATA.seg 1 >/dev/null
bimg brdcbedt.seg 0. 20.000000 4.000000 1 30 >/dev/null
bsum bimgbrdc.seg stak.seg 1.0 >/dev/null
mv bsumbimg.seg stak.seg
bsum BIMGbrdc.seg STAK.seg 1.0 >/dev/null
mv bsumBIMG.seg STAK.seg
echo gate: 40.0 60.0
bedt DATA.seg 40.000000 60.000000 1 66 1 0 >/dev/null
brdc bedtDATA.seg 1 >/dev/null
bimg brdcbedt.seg 0. 20.000000 4.000000 1 30 >/dev/null
bsum bimgbrdc.seg stak.seg 1.0 >/dev/null
mv bsumbimg.seg stak.seg
bsum BIMGbrdc.seg STAK.seg 1.0 >/dev/null
mv bsumBIMG.seg STAK.seg
echo gate: 60.0 80.0
bedt DATA.seg 60.000000 80.000000 1 66 1 0 >/dev/null
brdc bedtDATA.seg 1 >/dev/null
bimg brdcbedt.seg 0. 20.000000 4.000000 1 30 >/dev/null
bsum bimgbrdc.seg stak.seg 1.0 >/dev/null
mv bsumbimg.seg stak.seg
bsum BIMGbrdc.seg STAK.seg 1.0 >/dev/null
mv bsumBIMG.seg STAK.seg

9 SEISMIC INTERFEROMETRY 155

echo gate: 80.0 100.0
bedt DATA.seg 80.000000 100.000000 1 66 1 0 >/dev/null
brdc bedtDATA.seg 1 >/dev/null
bimg brdcbedt.seg 0. 20.000000 4.000000 1 30 >/dev/null
bsum bimgbrdc.seg stak.seg 1.0 >/dev/null
mv bsumbimg.seg stak.seg
bsum BIMGbrdc.seg STAK.seg 1.0 >/dev/null
mv bsumBIMG.seg STAK.seg
bscl stak.seg 1 1 0 0.200000 >/dev/null
mv bsclstak.seg stak.seg
bscl STAK.seg 1 1 0 0.200000 >/dev/null
mv bsclSTAK.seg STAK.seg
bplt stak.seg 1 0 1 1 66 0. 4.000000 1 4. 200
ps2pdf bplt.ps
mv bplt.pdf stak.pdf
rm -f bplt.ps
bplt STAK.seg 1 0 1 1 66 0. 4.000000 1 4. 200
ps2pdf bplt.ps
mv bplt.pdf STAK.pdf
rm -f bplt.ps

Type “gobimg” on the command line, and as the program runs, it will output progress to the terminal:

gate: 0.0 20.0
gate: 20.0 40.0
gate: 40.0 60.0
gate: 60.0 80.0
gate: 80.0 100.0

The two important output files will be:

• stak.pdf Shows the causal and acausal parts.

• STAK.pdf Mixes the causal and acausal parts.

WARNING: If you are running on Windows or on an Apple computer, the file system may not be case sensitive.
In that case, you should manually edit the script to change the last move “mv” command before running the script.
Also, be advised that unless your Windows OS can execute BASH (Bourne Again Shell), you may have a lot of
editing to do.

9 SEISMIC INTERFEROMETRY 156

EXAMPLE MIX=3:
genbimg DATA.seg 0 100. 20. 20. 4. 1 66 1 30 3

To see the difference, examine the “gobimg” script for lines with calls to BMIX.
The reason a mix can help is that these data were recorded with geophones along the edge of a road [24].

Traffic noise provided the signal, and when vehicles are broadside of the line of geophones, there will be broadside
arrivals. Alternatively, one can address the problem of azimuthal arrivals in other ways, like applying a signal
velocity window.

[16] is an examle of this approach. It requires forming a view on what velocities are signal (ie. Rayleigh
waves of interest), and which velocities are not. They also make judgements on the relative value of the causal and
acausal waves fields, computing a acausal/causal ratio (ACR). In BIMG, the mix option simply removes infinite
velocity, waves striking the array of geophones broadside. Such waves clearly should be excluded. However, how
much slower than infinite velocity should one exclude? Such judgements would be aided by two geophone arrays,
one along the road, one semi-orthogonal to the road.

If the goal is to do spectral analysis of surface waves from the resulting virtual gather, one can apply the
judgement on which apparent velocities are valid by limiting the scan of velocities in the surface wave analysis.
The approach in BSU-3.0.3 codes favors this line of thought.

Figure 76 illustrates how this is done using BVAX (6.11.2). Here, we only scan velocities from 100 to 800 m/s.
If phase velocities are present outside that range, we don’t look for them. This is an alternative to conditioning the
gather in Figure 75 by velocity filtering.

The range of offsets excluded near offsets which might be contaminated by near field effects. In addition,
since the source will be traffic on the road, offset orthogonally to the line of geophones, near offsets will tend to
be sub-broadside, and that leads to apparent horizontal velocities contaminated by azimuthal effects. The mix of
3 only addresses the most orthogonal part of the problem, this offset range limit is additional benefit. As a last
comment on this type of survey, one might restrict recordings to include only those from traffic in the near lane to
the deployment of geophones.

0 20 40 60 80
0.0

0.5

1.0

1.5

Offset [amp=4.00E+00 percnt=200 STAK.seg]

T
im

e
(s

ec
on

ds
)

Figure 74: GENBIMG: Output file STAK.seg is the sum of the BIMGxxxx.seg files for the different time windows.
Note that the time scale is 0 to 2.0 seconds with zero lag at 0 seconds. Mix was set to zero.

9 SEISMIC INTERFEROMETRY 157

0 20 40 60 80
0.0

0.5

1.0

1.5

Offset [amp=3.00E+00 percnt=200 STAK.seg]

T
im

e
(s

ec
on

ds
)

Figure 75: GENBIMG: Output file STAK.seg is the sum of the BIMGxxxx.seg files for the different time windows.
Note that the time scale is 0 to 2.0 seconds with zero lag at 0 seconds. Mix was set to 3.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

P
ha

se
 V

el
oc

ity
 (

m
/s

)

Frequency Hz

(A) STAK.seg Mix=3, Offsets 10 to 100 m

 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20 25 30

A
m

pl
itu

de

Frequency Hz

(B) Semblance

Figure 76: BVAX applied to data in Figure 75. The range of offsets were 10 to 100 m, velocity search 100 to 800
m/s, frequencies 2 to 30 Hz. Error bars are for 95% confidence.

REFERENCES 158

References
[1] K. Aki and P.G. Richards. Quantitative Seismology Vol. 1, volume 1. W.H. Freeman and Co., 1980. 557p.

[2] K.M. Barry, D.A. Cavers, and C.W. Kneale. Report on recommended standard for digital tape formats.
Geophysics, 40(2):344–352, 1975.

[3] J. K. Cohen and Jr. J. W. Stockwell. CWP/SU: Seismic Unix release 34: a free package for seismic research
and processing. Center for Wave Phenomena, Colorado School of Mines, 2000.

[4] D. Crice. BHG-2, BHG-3 borehole geophone operation manual. GeoStuff, 19623 via Escuela Dr., Saratoga,
Ca 95070, 1996. 16p.

[5] B. Gold, C. M. Rader, A. V. Oppenheim, and Stockham T. G., Jr. Digital Processing of Signals. Lincoln
Laboratory Publications. McGraw-Hill, 1969. San Francisco.

[6] H. Lamb. On the propagation of tremors over the surface of an elastic solid. Phil. Tran. Royal Society of
London, Series A(203):1–42, 1904.

[7] W. Menke. Geophysical data analysis, discrete inverse theory. Academic Press, 1989. San Diego 289pgs.

[8] P. Michaels. Surface wave inversion by neural networks. PhD thesis, University of Utah, Salt Lake City,
Utah, 1993.

[9] P. Michaels. A geophysical site investigation for a bridge foundation in a narrow canyon. Environmental &
Engineering Geoscience, 1(2):219–226, 1995.

[10] P Michaels. In situ determination of soil stiffness and damping. Journal of Geotechnical and Geoenviron-
mental Engineering, 24(8):709–719, 1998.

[11] P. Michaels. Use of engineering geophysics in the design of highway passing lanes. Proceedings of the Sym-
posium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP99, pages
179–187, 1999.

[12] P. Michaels. Use of principal component analysis to determine down-hole tool orientation and enhance SH-
waves. Journal of Environmental and Engineering Geophysics, 6(4):175–183, 2001.

[13] P. Michaels. Relating damping to soil permeability. International Journal of Geomechanics, 6(3):158–165,
May 2006.

[14] P. Michaels and R. B. Smith. Surface wave inversion by neural networks (radial basis functions) for engi-
neering applications. JEEG, 2(1):65–76, 1997.

[15] H.M. Mooney. Some numerical solutions for Lamb’s problem. Bulletin of the Seismological Society of
America, 64(2):473–491, 1974.

[16] Jingyin Pang, Feng Cheng, Chao Shen, Tianyu Dai, Ling Ning, and Kai Zhang. Automatic passive data
selection in time domain for imaging near-surface surface waves. Journal of Applied Geophysics, 162:108–
117, December 2019.

[17] C.L. Pekeris. The seismic surface pulse. Proceedings of the National Academy of Science, 41:469–480, 1955.

[18] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes, The art of scientific
computing Fortran version. Cambridge University Press, 1989. 702p.

[19] P.G. Richards. Elementary solutions to Lamb ’s problem for a point source and their relevance to three-
dimensional studies of spontaneous crack propagation. Bulletin of the Seismological Society of America,
69(4):947–956, 1979.

[20] E.A. Robinson. Multichannel Time Series Analysis with Digital Computer Programs. Holden-Day, 1967.
298p.

REFERENCES 159

[21] R.E. Sheriff. Encyclopedic dictionary of exploration geophysics. Society of Exploration Geophysics, 1991.

[22] K. H. Stokoe and S. M. Nazarian. Use of rayleigh waves in liquefaction studies. In R. D. Woods, editor,
Measurement and use of shear wave velocity for evaluating dynamic soil properties, GSP, pages 1–17. ASCE,
1985.

[23] M.N. Toksöz and D.H. Johnston. Definitions and Terminology, pages 1–5. Geophysics reprint series No. 2.
SEG, 1981.

[24] Kai Zhang, Hongyi Li, Xiaojiang Wang, and Kai Wang. Retrieval of shallow s-wave profiles from seismic
reflection surveying and traffic-induced noise. Geophysics, 85(6):EN105–EN117, November 2020.

A APPENDIX (BHELP LISTING) 160

A Appendix (bhelp listing)
babs.c rectify seismic traces
bagc.c automatic gain control of traces (scale in time and space)
ba2s.c FORMAT CONVERSION: ASCII TEXT ---> BSEGY (no geometry setting)
bamp.F90 amplitude analysis by frequency (K-V Solid)Downhole Sph. Div.
bamx.F90 amplitude analysis by frequency (K-V Solid)SurfaceWaves Cyl.Div
bbal.c balances two data sets to have same MAV (mean absolute value)
bcad.f plot seismic traces as CAD (*.dxf; digital exchange file)
bcar.c apply moving average (box car) filter as function of time
bcnv.c FORMAT CONVERSION: BSEGY <---> SEG-Y (BSU=*.seg, SEG-Y=*.sgy)
bcor.f cross correlate a selected trace with all others in a file
bdec.c decimates in trace direction to reduce number of traces
bimg.f seismic interferometry image by cross correlation
genbimg.c creates a bash script to run a loop of bimg instances
bcrd.f coordinate rotation and translation, BSEGY geometry headers
bdat.c datuming program for refraction data (easier for picking)
bdcn.f deconvolution (profile or trace mode), prediction or error out
bdif.f differentiates w.r.t. time using Bilinear Transform method
bdum.f generate dummy data set with user defined impulse position
bdump.f generate a dump of selected BSEGY header values
bedt.f edit BSEGY seismic file (traces, time, sample interval, etc.)
bequ.c trace equalize data by L2 norm or Maximum Absolute Value
bext.c extract traces from a merged data set based on header values
bfil.f ARMA FILTER of seismic traces (low-, band-, or high-pass)
bfit.f Solves for interval velocity from times in headers (VSP)
bftr.f FILTER traces with other *.seg traces, or namelist from bdump
bfxt.f F-X Transform of seismic traces
bgar.c exponential GAIN recovery, by range specification
bgaz.c exponential GAIN recovery, by depth specification
bhed.f up/down load selected header information from/to a text file
bhelp.c this listing of BSU package contents
bhod.F90 hodogram by PCA to determine down-hole tool orientation
bint.f numerical integration of seismic traces (trapezoidal rule)
bis2seg.c FORMAT CONVERSION: BISON ---> BSEGY (no geometry setting)
bkil.f either kill (delete) or zero seismic traces
bmed.f median mix of seismic traces (spatial)
bmix.f mean mix of seismic traces (spatial)
bmrg.f merge traces from many files to a single file
bmrk.f mark first break picks with a delta function on waveform
bmst.f MASTER illustrates programing in BSU, FORTRAN
bnez.c GEOMETRY: Create survey *.nez (Northing,Easting,Elevation) file
bnfd.c MODELING: computes near and far field in elastic whole space
bnos.f MODELING: generate band-limited random noise traces
boff.c computed source to receiver offset and add to headers
bpic.f automatic first break picker, or inserts picks from a file
bplt.c plot seismic traces X11|PS|XFIG|JPEG|PDF formats wt,va,blk/gry
brdc.f remove DC bias from traces
bred.f apply linear or hyperbolic correction in time to traces
bref.f delay time refraction analysis setup
brev.f reverse either channel order or sample polarity
brot.f rotate seismic traces (3-component data)
brpt.c remove pretrigger (updates header and static shift data)
brsp.f resample data in time (augmentation with zeros in freq domain)
bscl.f scale data set with user provided, or data derived factor
bsdc.f show DC level in seismic traces as %MAV (mean absolute value)
bshf.f apply a static shift to seismic traces (shift in time)
bshp.f Wiener least squares shaping filter
bsrt.c sorts traces by offset

A APPENDIX (BHELP LISTING) 161

bstk.f stacks traces in a gather (number traces out=number in)
bsum.c weighted sum of two data sets: file_out = file1 + C*file2
bswp.c byte swap a BSEGY or SU data set (toggle endian)
btor.f applies geophone orientations to trace headers (from PCA)
bvas.F90 measures body wave velocity dispersion (Kelvin-Voigt solid)
caplot.F90 PostScript plots of combined bvas and bamp runs
bvax.F90 measures velocity dispersion on surface data
bvel.f apply correctional velocity (linear with range) Down-Hole
bvsp.f down-hole travel time inversion with ray bending
bwht.f non-linear whitening program (agc applied to bank of filters)
bwin.f window the data aperture with raised cosine tapers
bxcr.f cross (or auto) correlation, output to BSEGY data set
tplt.c plot a single trace, pipes to GNUPLOT and writes gnuplot file
qplt.c plot all traces (scaled by max abs) pipe to GNUPLOT and write

a gnuplot file (qgraph.gp)
gendis.f helper program to build namelist file for program disper.f
disper.f computes dispersion curves for Rayleigh waves (see also waves)
showmdl.f show model in disper.d file
genwav.F90 Helper program to build namelist file for program waves.f
waves.F90 computes synthetic Rayleigh wave only seismograms (see disper)
cmst.c MASTER illustrates programing in BSU, C-LANGUAGE
egg2seg.c FORMAT CONVERSION: EEG’s SEG-2 ---> BSEGY (no geometry)
seg2txt.f FORMAT CONVERSION: BSEGY ----> ASCII (Octave/Matlab)
seg2csv.c FORMAT CONVERSION: BSEGY ----> CSV (comma separated value)

CSV files can be input into spread sheets
seg2dump.c RAW DUMP of SEG-2 data file to text listing.
segd2seg.c Convert SEG-D Rev. 1 data file to BSEGY format
bsg2.c Convert a file from BSEGY to SEG-2 format.
wav2txt.c Convert a file from WAV audio format to ASCII txt
genb2s.f BASH SCRIPT GENERATOR: sets up a block of bis2seg runs
genbhod.f BASH SCRIPT GENERATOR: sets up for PCA analysis s-wave source
genbhodV.f BASH SCRIPT GENERATOR: sets up for PCA analysis vert. source
genbrot.f BASH SCRIPT GENERATOR: sets up for run of brot on many files
genref.f BASH SCRIPT GENERATOR: for geometry setting on pattern, CDP
gensetg.c generates control files for geometry setting, setgeom program
genvsp.f BASH SCRIPT GENERATOR: setting geometry for down-hole surveys
halfsp.f computes motion-stress vectors and velocity of Rayleigh wave
lamb.c MODELING: computes solution to Lamb’s problem (Vp/Vs=sqrt(3))
picrestore.f Restore suxpicker picks on data reduced by bred.f
setgeom.c Sets geometry for reciprocal refraction shooting (see gensetg)
genwaw.c Interactive, Set geometry and convert SEG-2---->BSEGY

(genwaw good use is for walk-away shooting)
top2dxf.f FORMAT CONVERSION: Survey NEZ (*.nez) ---> CAD (*.dxf)
top2nez.f FORMAT CONVERSION: RAW TOPCON ---> Survey NEZ (*.nez)
topbcrd.f apply coordinate translation and rotation to Survey NEZ (*.nez)
topcon.f combines NEZ with BISON file --->*.xyz file Run bhed on *.xyz
topcon2.c combines NEZ with EGG SEG-2 ---> BSEGY with geometry
traplt.f line printer style plots of samples and spectrum

C-FUNCTIONS:
bargrid.c draw a progress bar grid to screen (stdout)
c_boxit.c apply a running average (box car) filter to a signal
c_bsegin.c read a seismic trace in BSEGY format
c_bsegout.c write a seismic trace in BSEGY format
cr_labl.c write a copyright label to screen (stdout)
exbar.c draw progress bar to screen (stdout)
fcr_labl.c write a copyright label to a file
findxyz.c extract geophone and source coordinates from headers

A APPENDIX (BHELP LISTING) 162

fmax_min.c compute maximum and minimum value in a signal, and indexes
fnorm.c compute L2 norm of a signal
hlp_labl.c print a help label to screen (stdout)
in_chk.c scan a data set for number of traces, sample interval, etc.
lsqufit.c least squares fit, straight line function: y=mx + b
mav.c compute mean absolute value of a signal
names.c build file names from process ID
onepole.c perform a single pole (Z-plane) filter
xdrfloa.c IBM functions to convert between IEEE and IBM floats

FORTRAN SUBROUTINES:
agc.f apply Automatic Gain Control (AGC) on a signal
arma.f apply an Autoregressive Moving Average (ARMA) filter
bnoise.f compute band-limited random noise
boxit.f apply a running average (box car) filter to a signal
bsegin.f read a seismic trace in BSEGY format
bsegout.f write a seismic trace in BSEGY format
cfilt.f design a bank of band-pass digital filters
chktrc.f scan a data set for number of traces, sample interval, etc.
conv.f apply a selected filter out of bank designed by cfilt.f
conv2.f time domain convolution of two signals
cross.f E. A. Robinson’s cross correlation subroutine
cshift.f shift traces in frequency domain by phase rotation
czero.f zero a complex signal
demult.f demultiplex a complex trace into real and imag. parts
dot.f E. A. Robinson’s inner (dot) product between two vectors
drum.f E. A. Robinson’s phase unwrapping subroutine (modified by pm)
eureka.f E. A. Robinson’s solution by Levinson Recursion
findxyz.f extract geophone and source coordinates from headers
flist.f line printer style plot of a complex signal (spectrum)
fmed.f bubble sort on a vector, returns median value
fold.f E. A. Robinson’s convolution subroutine
l2norm.f rescale a seismic signal by its L2 norm
nlogn.f E. A. Robinson’s Fast Fourier Transform (Radix 2)
nrad2.f determines the first power of two larger than a given value
pltbar.f draw progress bar to screen (like bargrid.c and exbar.c)
polar.f E. A. Robinson’s conversion from rectangular to polar form
rand.f CMLIB: generates uniform pseudo-random number
rect.f convert complex numbers from polar to rectangular form
runif.f CMLIB: calls rand.f to generate longer period random sequence
shape.f E. A. Robinson’s least squares shaping filter
tlist.f line printer style plot of a signal (also lists values)
vshft.f shifts a signal by linear interpolation of samples
xcor.f cross correlates two signals
xcor1.f one sided autocorrelation of a signal
xmax.f find maximum and minimum values in a vector
C-INCLUDE FILES: Source Code Directory=bsu-3.0.0/src/C/include/

Installed Directory=/usr/local/include/bsu-3.0.0/
c_bsegy.h BSEGY header structure
sub4.h prototypes of library functions

FORTRAN INCLUDE FILES: Source Code Directory=bsu-3.0.0/src/Fort/include/
Installed Directory=/usr/local/include/

bsegy.inc BSEGY header declaration and equivalence statements
bsegy.f90 BSEGY header declaration and equivalence statements

OCTAVE/MATLAB CODES
Octave: Installed Directory=/usr/local/share/octave/site-m

A APPENDIX (BHELP LISTING) 163

bsegin.m Reads seismic traces in BSEGY format
bsegout.m Write seismic traces in BSEGY format
segyinfo.m Scan a BSEGY file
traplt.m Plot a signal from a BSEGY data set and its spectrum
segpic.m Pick first breaks using mouse on waveform
profplot.m Plot all traces in a file, simple waveform format
yulewalker.m Plot all pole spectrum of seismic trace or from an

autocorrelation signal as input.

DOWN HOLE SOFTWARE Octave/Matlab
hodoplot.m Plot hodogram (two channels in same file)
hodo2plot.m Plot hodogram (channels in two different *.seg files)
seisazi.m Plot header azimuth of receiver component

(intended for use prior to rotation to a constant az)
vfitw.m Least Squares fit to first break down-hole data
vplot.m Nice plot of vfitw.m results
cainv3.m Kelvin-Voigt inversion of down-hole (VSP) data

(requires bvas.his and bamp.his results)
caplot3.m Nice plot of cainv3.m results
cafwd3.m Forward modeling, Kelvin-Voigt computes dispersion

REFRACTION SOFTWARE Octave/Matlab
direct.m Direct wave analysis for overburden velocity
delaytm.m Delay time analysis of refraction data conventional
delaytmR.m Delay time analysis of refraction data reciprocal
refplot.m First break analysis (apparent velocity, intercept)

SURFACE WAVE SOFTWARE Octave/Matlab
rayleigh.m Example on how to dynamically link rwv.f for dispersion

curve computation in Octave environment.
moho.m Example similar to rayleigh.m, but plots dispersion

as a function of period.
FwdR1.m Forward problem, Rayleigh wave given bvax results to

compare to. model.txt is a file with 3 rows
describing the soil profile. Example (nlay=3)
nlay
v1 v2 v3
z1 z2 z3

invR1.m Inverts a dispersion curve from bvax results (bvax.his)
Truncated Singular Value method employed.
Starting model in model.txt as in FwdR1.m above.

SASW.m Spectral Analysis of Surface Waves
Data= two time domain signals from a *.seg BSEGY data
set. Computes required cross-spectra and coherence

saswv.m Spectral Analysis of Surface Waves
Data= Cross-Power Spectrum and Coherence, text file
dx32f.txt sample data from NGES, Texas A&M Georisk 2011

Dispcurve.m Example program computes dispersion from spectral record
Data= Frequency spectra recorded at many offsets
20mSourceOffset.mat sample data Christchurch New Zealand
GeoCongress 2014 ASCE meeting, see GSP 234-235

PseudoTime.m Example program computes time series from recorded
same frequency spectra data set as in Dispcurve.m above

kvKVMBscan.m Kelvin Voigt to KVMB damping ratio for frame:water mass
kdKVMBscan.m KV damping ratio vs hydraulic conductivity for porosity
fqKVMBscan.m KV damping ratio vs frequency for hydraulic conductivity
KD4kvmb.m Wave stiffness,damping + porosity solution hydraulic c.

SCRIPTS: Installed Directory=/usr/local/share/bsu/scripts

A APPENDIX (BHELP LISTING) 164

Example scripts which can be customized as needed.
xplot X11 Plot waveform data using BSU program bplt
psplot Postscript Plot wavform data using BSU program bplt
xPlot-su X11 Plot waveform data using Seismic Unix (SU required)
psPlot-su Postscript Plot wavform data using Seismic Unix
rename-btor Automated renaming of files after btor execution
mergeplots Concatonates group of Postscript files into a single PDF
Merge-all Script to process all combinations of VSP data
Merge2 VSP processing if load cell + 3 downhole + 3 ref. phones
Merge VSP processing to P-wave and SH-wave data sets

DOCUMENTATION: Installed Directory=/usr/local/share/doc/bsu
README
bsu-user-guide3-3.pdf (pdf user guide)
bsu-user-guide-html.tar.gz (html user guide)
man-bsu3-html.zip (html man pages)
Running_BSU-3.0.3.pdf (Details on runnin BSU codes)
RunningBSU-html.tar.gz (html version of Running BSU)

B APPENDIX (MERGE-ALL) 165

B Appendix (Merge-all)
The following bash script is used in down-hole surveys to form the various resorted data sets. These include both
difference and sum of opposite source polarizations, for each individual component.

#!/bin/sh
$Id: Merge-all,v 1.1.1.1 2017/04/13 21:40:01 pm Exp $
Merge-all: basic script to merge traces in all combinations
(sum or difference) by each component.
#
Notation: component/location/sum or dif/
Examples:
tddf=Tcomponent, down-hole, difference
trdf=Tcomponent, reference, difference
tdsm=Tcomponent, down-hole, sum
trsm=Tcomponent, reference, sum
#
This combines all the shot gathers into receiver gathers for the different
geophone components in a down-hole survey. You should have run bhod first
to determine tool orientation, btor to insert orientations into headers,
and brot to rotate the data into a standard orientation. If you have, then
you can run this script.
#
Copyright (c) 2017 Paul Michaels
<pm@cgiss.boisestate.edu>
This program is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published
by the Free Software Foundation; either version
2 of the License, or (at your option) any later
version. This program is distributed in the
hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU
General Public License along with this program;
if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

#set -x

#...define parameters YOU MUST DEFINE THESE FOR EACH NEW SURVEY
SINCE IT IS LIKELY THAT THE NUMBER OF RECORDS
WILL VARY WITH EACH SURVEY !!!!
odmin=01
odmax=145
evmin=02
evmax=146
PRFX=L
eklmax=(odmax-1)/2
eklmax=‘bc <<END
($odmax-1)/2
END‘
echo $eklmax
oklmax=eklmax+1
oklmax=‘bc <<END
($eklmax+1)

B APPENDIX (MERGE-ALL) 166

END‘
echo $oklmax

#shaping filter parameters (bshp)
tmin=0.
tmax=0.1
npf=360
stab=.0001

#polarity file definitions
az90=1
az270=2

#Scale Data by VERTICAL REF (ch4) (Absolute Scale from last, evmax)
bscl brot$PRFX$evmax.seg 4 1 3 1>/dev/null
AMP=‘gawk ’/Peak Absolute Value/ {print $4}’ bsclbrot.lst‘
echo $AMP

FILE=‘find brot*seg | sed s/\.seg/’’/g |sed s/brot/’’/g‘
for i in $FILE; do

bscl brot$i.seg 4 1 3 1>/dev/null
mv bsclbrot.seg bscl$i.seg
bscl bscl$i.seg 4 1 0 $AMP 1>/dev/null
mv bsclbscl.seg bscl$i.seg

done

#...reference phone gathers (VERTICAL=ch4)
bmrg bscl$PRFX $odmin $odmax 2 4 4 1>/dev/null
mv bmrg.seg rfv1.seg
bmrg bscl$PRFX $evmin $evmax 2 4 4 1>/dev/null
mv bmrg.seg rfv2.seg

#...reference phone gathers (RADIAL=ch5)
bmrg bscl$PRFX $odmin $odmax 2 5 5 1>/dev/null
mv bmrg.seg rfr1.seg
bmrg bscl$PRFX $evmin $evmax 2 5 5 1>/dev/null
mv bmrg.seg rfr2.seg

#...reference phone gathers (TRANSVERSE=ch6)
bmrg bscl$PRFX $odmin $odmax 2 6 6 1>/dev/null
mv bmrg.seg rft1.seg
bmrg bscl$PRFX $evmin $evmax 2 6 6 1>/dev/null
mv bmrg.seg rft2.seg

#...down hole swc phone gathers (TRANSVERSE=ch3)
bmrg bscl$PRFX $odmin $odmax 2 3 3 1>/dev/null
mv bmrg.seg swt1.seg
bmrg bscl$PRFX $evmin $evmax 2 3 3 1>/dev/null
mv bmrg.seg swt2.seg

#...down hole swc phone gathers (RADIAL=ch2)
bmrg bscl$PRFX $odmin $odmax 2 2 2 1>/dev/null
mv bmrg.seg swr1.seg
bmrg bscl$PRFX $evmin $evmax 2 2 2 1>/dev/null
mv bmrg.seg swr2.seg

#...down hole swc phone gathers (VERTICAL=ch1)
bmrg bscl$PRFX $odmin $odmax 2 1 1 1>/dev/null
mv bmrg.seg swv1.seg

B APPENDIX (MERGE-ALL) 167

bmrg bscl$PRFX $evmin $evmax 2 1 1 1>/dev/null
mv bmrg.seg swv2.seg
#---

Notation: component/location/sum or dif/
tddf=Tcomponent, down-hole, difference
trdf=Tcomponent, reference, difference
tdsm=Tcomponent, down-hole, sum
trsm=Tcomponent, reference, sum
#
#DIFFERENCE ENHANCEMENT
downhole (side wall clamping phone)
bsum swt$az90.seg swt$az270.seg -1.0
mv bsumswt$az90.seg tddf.seg

bsum swv$az90.seg swv$az270.seg -1.0
mv bsumswv$az90.seg vddf.seg

bsum swr$az90.seg swr$az270.seg -1.0
mv bsumswr$az90.seg rddf.seg

reference phone at surface
bsum rft$az90.seg rft$az270.seg -1.0
mv bsumrft$az90.seg trdf.seg

bsum rfr$az90.seg rfr$az270.seg -1.0
mv bsumrfr$az90.seg rrdf.seg

bsum rfv$az90.seg rfv$az270.seg -1.0
mv bsumrfv$az90.seg vrdf.seg
#---

#SUM ENHANCEMENT
downhole (side wall clamping phone)
bsum swt$az90.seg swt$az270.seg +1.0
mv bsumswt$az90.seg tdsm.seg

bsum swv$az90.seg swv$az270.seg +1.0
mv bsumswv$az90.seg vdsm.seg

bsum swr$az90.seg swr$az270.seg +1.0
mv bsumswr$az90.seg rdsm.seg

reference phone at surface
bsum rft$az90.seg rft$az270.seg +1.0
mv bsumrft$az90.seg trsm.seg

bsum rfr$az90.seg rfr$az270.seg +1.0
mv bsumrfr$az90.seg rrsm.seg

bsum rfv$az90.seg rfv$az270.seg +1.0
mv bsumrfv$az90.seg vrsm.seg

#---
#make links to alias names like Merge
ln -s tddf.seg twav.seg
ln -s trdf.seg tref.seg
ln -s vdsm.seg pwav.seg
ln -s vrsm.seg vref.seg

B APPENDIX (MERGE-ALL) 168

#SH-WAVE SHAPING
#...take last trace as a target
bkil trdf.seg 1 1 1 $eklmax 1>/dev/null
bstk bkiltrdf.seg 1>/dev/null
bscl bstkbkil.seg 1 1 0 $oklmax.0 1>/dev/null
mv bsclbstk.seg targ.seg

#...determine shaping filters and apply to T-Reference rft*.seg
bshp trdf.seg targ.seg 1 1 $tmin $tmax $npf $stab
#...apply shaping filters to downhole T-data swt*.seg
bshp trdf.seg targ.seg 1 0 $tmin $tmax $npf $stab tddf.seg
mv bshptddf.seg twave.seg
#---

#P-WAVE SHAPING
#...take last trace as a target
bkil vrsm.seg 1 1 1 $eklmax 1>/dev/null
bstk bkilvrsm.seg 1>/dev/null
bscl bstkbkil.seg 1 1 0 $oklmax.0 1>/dev/null
mv bsclbstk.seg varg.seg

#...determine shaping filters and apply to V-Reference rfv*.seg
bshp vrsm.seg varg.seg 1 1 $tmin $tmax $npf $stab
#...apply shaping filters to downhole T-data swv*.seg
bshp vrsm.seg varg.seg 1 0 $tmin $tmax $npf $stab vdsm.seg
mv bshpvdsm.seg pwave.seg
#---

#...quick view of results
bequ twave.seg 0 .25
bplt bequtwav.seg 3 0 0 1 500 0 .5 1 2 200
mv bplt.jpg twave.jpg

#...quick view of results
bequ pwave.seg 0 .025
bplt bequpwav.seg 3 0 0 1 500 0 .25 1 2 200
mv bplt.jpg pwave.jpg

echo " "
echo "---"
echo "| |"
echo "|To display QC plots: |"
echo "| |"
echo "| SH-Wave (horizontal rotated data): |"
echo "| |"
echo "| display twave.jpg |"
echo "| |"
echo "| P-Wave (vertical component data): |"
echo "| |"
echo "| display pwave.jpg |"
echo "| |"
echo "---"

C APPENDIX (MERGE2) 169

C Appendix (Merge2)
The following bash script is used in down-hole surveys to form the various resorted data sets. This script is
designed for a vertical impact source with a load-cell signal on channel 7.

#!/bin/sh
$Id: Merge2,v 1.1.1.1 2017/04/13 21:40:01 pm Exp $
#set -x
USE THIS FOR 7 TRACE DATA SETS:
Merge2: basic script to merge traces into P-wave gather and parse off load_cell trace
assumes channels in following order 1,2,3 down-hole, 4,5,6 reference, 7=load_cell
!!!Does NOT do enhanced processing. Simple trace extraction with bmrg program.!!!
#
This combines all the shot gathers into receiver gathers for the different
geophone components in a down-hole survey.
#
NOTE:!!!
This script was designed for a vertical impact source. There is no S-wave enhancement
since the source is excited with only one polarization.
#
Copyright (c) 2017 Paul Michaels
<pm@cgiss.boisestate.edu>
This program is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published
by the Free Software Foundation; either version
2 of the License, or (at your option) any later
version. This program is distributed in the
hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU
General Public License along with this program;
if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

#set -x

#...define parameters YOU MUST DEFINE THESE FOR EACH NEW SURVEY
SINCE IT IS LIKELY THAT THE NUMBER OF RECORDS
WILL VARY WITH EACH SURVEY !!!!

#...define parameters
odmin=01
odmax=83
PRFX=brot10

#pull off load_cell channels
bmrg $PRFX $odmin $odmax 1 7 7 1>/dev/null
mv bmrg.seg ldcl.seg
echo "created ldcl.seg (load cell traces)"

#pull off vertical reference phone
bmrg $PRFX $odmin $odmax 1 4 4 1>/dev/null
mv bmrg.seg refv.seg
echo "created refv.seg (vertical reference traces) "

C APPENDIX (MERGE2) 170

#pull off radial reference phone
bmrg $PRFX $odmin $odmax 1 5 5 1>/dev/null
mv bmrg.seg refr.seg
echo "created refr.seg (radial reference traces) "

#pull off transverse reference phone
bmrg $PRFX $odmin $odmax 1 6 6 1>/dev/null
mv bmrg.seg reft.seg
echo "created reft.seg (transverse reference traces)"

#pull off vertical down-hole phone
bmrg $PRFX $odmin $odmax 1 1 1 1>/dev/null
mv bmrg.seg swcv.seg
echo "created swcv.seg (vertical swc phone traces) "

#pull off radial down-hole phone
bmrg $PRFX $odmin $odmax 1 2 2 1>/dev/null
mv bmrg.seg swcr.seg
echo "created swcr.seg (radial swc phone traces) "

#pull off transverse down-hole phone
bmrg $PRFX $odmin $odmax 1 3 3 1>/dev/null
mv bmrg.seg swct.seg
echo "created swct.seg (transverse swc phone traces)"

echo done

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 171

D GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the
works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions
of a program–to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General
Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know
you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to
respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the
same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer
you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For
both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as
needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied
to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Li-

censees" and "recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other

than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on"
the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.
To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable

for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification), making available to the public, and in some countries other
activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction
with a user through a computer network, with no transfer of a copy, is not conveying.

http://fsf.org/

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 172

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and promi-
nently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the
work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to
view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in
the list meets this criterion.

1. Source Code.
The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means

any non-source form of a work.
A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in

the case of interfaces specified for a particular programming language, one that is widely used among developers working in
that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the
normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable
use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and
(for an executable work) run the object code and to modify the work, including scripts to control those activities. However,
it does not include the work’s System Libraries, or general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Cor-
responding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided

the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work.
This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications
exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this
License in conveying all material for which you do not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obliga-

tions under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting
circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim
any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspic-

uously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License
and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for
a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source

code under the terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 173

b) The work must carry prominent notices stating that it is released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4 to "keep intact all notices".

c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of
the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate
does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License, in one of these ways:
a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied

by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied

by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in
accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access
to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of
what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used
for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received
by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the
particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless
such uses represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its Corre-
sponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no
case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has
been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects
the operation of the network or violates the rules and protocols for communication across the network.

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 174

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that
is publicly documented (and with an implementation available to the public in source code form), and must require no special
password or key for unpacking, reading or copying.

7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of

its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy,
or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify
the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate

Legal Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be

marked in reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified

versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the
Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that
is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of
the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise

to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights
from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive
new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a

covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require
acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you
indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,

modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with
this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or sub-
dividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 175

party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor
in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work
from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you
may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.
A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program

is based. The work thus licensed is called the contributor’s "contributor version".
A contributor’s "essential patent claims" are all patent claims owned or controlled by the contributor, whether already

acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling
its contributor version, but do not include claims that would be infringed only as a consequence of further modification of
the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent
claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to
enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant"
such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server
or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered
work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance
of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or
is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of conveying the work, and under which
the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or
that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this

License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to
whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work

licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as
such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to

time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.

D GNU GENERAL PUBLIC LICENSE VERSION 3, 29 JUNE 2007 176

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the
GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions
either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software
Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-

CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, RE-
PAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-

RIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to

their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a
fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to
make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License

as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for

details type ‘show w’. This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of
course, your program’s commands might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the
program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your pro-
gram is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

E IBM LICENSE 177

If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

E IBM LICENSE
The following license was included with the library downloaded in the archive, libascii.tar.Z. The only function
from this library included in BUS is file, xdrfloa.c, which is used to make BUS library libibm.a.

<http://www-03.ibm.com/systems/z/os/zos/features/unix/libascii.html

* libascii - ascii-ebcidic interface layer - README file *
* Version 1.1.9 *
* *
* To report problems or ask questions send e-mail to: *
* *
* libascii@nvet.ibm.com *
* *
* Copyright: Licensed Materials - Property of IBM. *
* (C) Copyright IBM Corp. 1997, 1998. *
* All rights reserved. *
* *
* License information: *
* The libascii source code is provided free of charge and *
* may be distributed freely. No fee may be charged if you *
* distribute the libascii source code (except for such things *
* as the price of a disk or tape, postage). The libascii *
* makefile will compile and produce a libascii.a archive file. *
* The libascii.a archive may be link edited with any software *
* vendor product. Any software vendor product that is link *
* edit with libascii.a archive is free to distribute and charge *
* for that product. *
* *
* THIS PROGRAM IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY *
* KIND, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES *
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* IBM does not warrant uninterrupted or error free operation of *
* the Program, or that the Program is free from claims by a *
* third party of copyright, patent, trademark, trade secret, *
* or any other intellectual property infringement. IBM has *
* no obligation to provide service, defect correction, or any *
* maintenance for the Program. IBM has no obligation to *
* supply any Program updates or enhancements to you even if *
* such are or later become available. *
* *
* Under no circumstances is IBM liable for any of the *
* following: *
* *
* 1. third-party claims against you for losses or damages; *
* 2. loss of, or damage to, your records or data; or *
* 3. direct damages, lost profits, lost savings, *
* incidental, special, or indirect damages or other *
* consequential damages, even if IBM or its authorized *
* supplier, has been advised of the possibility of *
* such damages. *
* *
* Some jurisdictions do not allow these limitations or *
* exclusions, so they may not apply to you. *

http://www.gnu.org/philosophy/why-not-lgpl.html
http://www-03.ibm.com/systems/z/os/zos/features/unix/libascii.html

Index
Arch-linux, 18

ba2s, 46
bamp, 89
bamp.ps, 90
bampqc.ps, 89
bcnv, 42
BCOR, 150
bdump, 76
bhed, 71, 102
bhelp, 39, 160
bhod, 71
BIMG, 152, 153
bint, 60
bis2seg, 53, 71, 102
Bison, 102
bison, 53
bnez, 47, 52
bnfd, 129
bpic, 83
bplt, 55, 82
bref, 104
brot, 77
bsegin.m, 127
BSEGY, 95
btor, 74
build directions, 15
building plplot, 23
bvas, 87
bvas.his, 87
bvas.ps, 87
bvasqc.ps, 87
bvax, 116
bvsp, 85

cainv3.m, 87, 91
caplot3.m, 91, 92
CentOS-7, 19
changes, 12
chrome-book, 20
clipping, 60
cmake, 20
CMLIB, 32
compile details, 15
ConeTec, 85
constraint equations, 100, 106
contents, 3
conventions, bref, 106
conventions, naming, 36
conventions, parameter, 36
convert, displacement to velocity, 143

converting Bison, 69
creating base maps, 95
cross correlation, 152
cross-correlation, 150

damping, 86
damping, frequency, 148
damping, hydraulic conductivity, 147, 149
damping, inversion, 149
damping, KVMB, 146
damping, seismic, 146
data sample, description, 67
data sample, down-hole, 64
Debian-10, 16
Debian-11, 16
delay time, 104
delay time method, 99
delaytm.m, 101, 107
delaytmR.m, 113
derivative, 126
derivative, bilinear transform, 143
differential equation, 86
direct wave, 97
direct.m, 97, 98
disper, 131, 134
dispersion, 131
divergence, spherical, 89
documentation, BSU, 39
down-hole, analysis, 83
download files, 25

edit, disper.d, 134
edit, waves.d, 139
editing, bref files, 106
editing, Merge, 81
elastic, 125, 127
elastodynamic, 129
error bars, decay, 90
error bars, velocity, 87
examples, down-hole data, 64
examples, plotting, 55

far field, 129
figures, list, 9
filter selection, 90
format XDR, 61
format, bsegy, 41
format, conversion, 41, 95
format, IBM floats, 43
format, IEEE floats, 43
format, segy, 42
fqKVMBscan.m, 148

178

INDEX 179

genbhod, 71
GENBIMG, 153
genbrot, 77
gendis, 131, 133
genref, 53
gensetg, 47
genvsp, 69, 76
genwav, 137
geometry, 46
geophone, down-hole, 65
geophone, reference, 65
GNU license, 2, 171
gobhodo, 72, 73
gobhodoR, 72
gogeom, 103
gorunbhod, 72
gorunbhodR, 72
gpg signature, debian, 30
gpg signature, rpm, 30
gpg, detached sig, 31
gsl, cblas, 32

halfsp, 130
headers, 46
hexdump, 44
hodo2plot.m, 80
hodogram, 72
hodograms, 74
hodoplot.m, 79
Hydraulic Conductivity, 146
hydraulic conductivity, 148

IBM license, 177
install source, Linux packages, 28
install source, TAR, 27
install, binaries, 25
install, deb binaries, 26
install, MacBook Pro, 26
install, MicroSoft binaries, 26
install, rpm binaries, 26
install, Slackware or Arch, 26
integration, 60
interferometry, 150, 153
Inversion, stiffness and damping, 91
itype, 126

kdKVMBscan.m, 147
kvKVMBscan.m, 147
KVMB, 146
KVMB, mapping to KV, 147

lamb, 124
Lamb’s Problem, 124
lamb, examples, 127
lamb, running, 125

lapack, blas, 32
LIBMSEED, 33
location, scripts, octave, 68
locations, functions and subroutines, 39
lst, 73, 74

MacBook-Pro, 22
man pages, 40
mat2.m, 135
matc.m, 139
matu.m, 139
Merge, 81
Merge procedure, 81
merge-all, 165
Merge2, 169
mergeplots, 73
Merging, 80
modeling, 124
modeling, KV, 93

near field, 129
near field, bnfd, 129
NEZ, 52, 102
nodeps, 34

obtaining BSU, 14
Octave, 33, 104
other software, 32

passive seismic, 150
PCA, 71, 74
pdf, 73
Picking, 83
picking, first breaks, 104
plotting, gnuplot, 61
plotting, octave, 63
plotting, SU, 60
PLPLOT, 32
plplot, 20
problems, 33
profplot.m, 64
programming, 35
programming conventions, 36
programming, C-language, 38
programming, Fortran, 37
psPlot, 82
psplot, 82

quality control, 87
quality control, decay, 89
quality control, picks, 84
quality control, velocity, 87

Rayleigh Wave, 117
Rayleigh Wave invR1.m, 120

INDEX 180

Rayleigh Wave, dispersion, 116
Rayleigh Wave, FwdR1.m, 119
Rayleigh waves, amplitude, 141
Rayleigh waves, bandwidth, 143
Rayleigh waves, dispersion, 131
Rayleigh waves, half-space, 130
Rayleigh waves, horizontal motion, 141
Rayleigh waves, modes, 141
Rayleigh waves, vertical motion, 139
Rayleigh waves, wavelet, 141
recording aperture, 90
refplot.m, 96
refraction, 95
refraction, reciprocal shooting, 110
rename-btor, 75
running bsu, 40

SASW, 121
SASW.m, 121
saswv.m, 121
script, bplt, 57
security, 30
SEG-2, 47, 104
seg2csv, 45
seg2txt, 45
segpic.m, 83, 104
SEGY, 95
segyinfo.m, 127
seisazi.m, 77
Seismic Unix, 33, 82, 103
seismic unix, 60
seismogram, synthetic, 137
semblance, 87
setting geometry, 46, 53, 65
shear wave, inversion , 149
showmdl, 133
Slackware, 17
slope stability, 95
Sorting, 80
sorting, rec. gathers, 110
source, seismic, 64
spectra, 123
spectra, Yule-Walker, 123
stiffness, 86
surfacewave, 115
survey data, 52

topcon, 53, 102, 104
topcon2, 104
traplt, 58
traplt.m, 63, 127
trouble shooting, 33

user’s guide, 40
using BSU, 41

velocity, overburden, 98
vertical time, 85
vfitw.m, 85
vplot.m, 85

waves, 137
what’s new, 12

XDR, 33, 61
XDR work-a-round, 61
Xfig, 33, 92
xplot, 82
xPlot-su, 82

yulewalker, autocorrelation, 124
yulewalker.m, 123

Z-transform, 126

	Description of BSU
	What's New in BSU-3.0.3
	What Changed BSU-3.0.1 BSU-3.0.2

	Obtaining and Installing BSU
	Package Managers
	Compile Tips
	Most Common Problem

	 Building From Source
	Dependencies
	General Directions
	Debian 10 Buster
	Debian 10 Dependencies (at time of this writing)
	Directories to Create

	Slackware
	Arch Linux
	CentOS 7
	Dependencies (at time of this writing)
	Directories to Create
	Alternative Approach

	Chrome Book
	Dependencies
	Libmseed dependency
	Build BSU-3.0.3

	MacBook Pro
	Redhat Enterprise
	Microsoft Windows

	Octave
	What to download
	Installing Binary Packages
	Debian, Mint, Ubuntu, or Chrome Book Install (APT)
	RedHat Package Install (RPM)
	Slackware or Arch Linux Package Install
	 MacBook Pro Darwin Package Install
	Microsoft Package Install

	Installing Source Code
	TAR Source: Linux or Darwin
	Additional Hints on Configure Options

	Install Source: Linux Packages
	Debian Source Package Build
	Redhat Source Package Build

	Security
	GPG Signature, RPM Packages
	GPG Signature, DEB Packages
	Detatched GPG Signatures

	Other Software
	PLPLOT
	 BLAS and LAPACK
	 GSL and CBLAS
	CMLIB
	LIBMSEED
	Octave
	Seismic Unix
	Xfig
	Trouble Shooting
	Example: PLPLOT tar, BSU rpm

	Programming in BSU
	Programming Guidelines
	Conventions and Process Flow Description
	File Naming Conventions
	Input Parameter Conventions
	Process Flow, Fortran Codes
	Process Flow, C-Language Codes
	Locations of Functions and Subroutines

	BSU Documentation
	Command Line Help
	The bhelp Program
	BSU Man Pages
	BSU User's Guide and Running BSU

	Using BSU
	BSU Data Format, BSEGY
	Data Format Conversion
	SEGY Exchange Format
	IBM and IEEE Floats
	IBM FLOAT
	IEEE FLOAT

	Checking Binary Files with hexdump
	Preparing data for BSU processing
	Conversion Programs: BSEGY <–> [SEGY | ASCII | CVS | Bison | SEG2]
	seg2txt
	seg2csv
	ba2s

	Setting Geometry
	Setting Geometry SEG-2 Data: Example 1 [bnez-> gensetg-> egg2seg-> setgeom]
	Setting Geometry SEG-2 Data: Example 2 [bnez-> topcon2]
	NEZ Format

	Setting Geometry Bison Data: [genref-> geom->geom2(go1)]

	Plotting Seismic Data
	Using bplt
	Example bplt

	Using bplt in a bash script
	Plotting with traplt
	Plotting with SU
	Plotting with Gnuplot
	Plotting with Octave
	Running traplt.m
	Running profplot.m

	Down-hole Seismic Processing
	Seismic Source (SH- and P-wave)
	Down-hole and Reference Geophones
	Sample Data Set from GeoLogan97
	Where to Find Scripts and Octave Codes
	Converting Bison Files to BSEGY Format and Setting Geometry
	Post genvsp processing steps

	Determining Down-hole Tool Orientation by PCA
	Inserting the PCA Results to the Trace Headers (btor)
	Checking the Headers for Source and Geophone Polarizations(bdump)
	Using seisazi.m to display azimuth headers
	Rotating the Horizontal Data into Alignment with Source (genbrot and brot)
	Post brot processing steps
	Verify Rotation with hodoplot.m
	Using hodo2plot.m to plot hodograms

	Sorting and Merging to Common Receiver Component Gathers
	Edit Merge Script for the Specific Down-hole Survey
	Description of the Merge Procedure.
	Plotting the Results from Merge

	Down-hole Seismic Analysis
	Picking First Arrivals
	Quality control of picks

	Vertical Time and Observed Travel Time Inversion (vfitw.m, vplot.m, bvsp)
	Determination of Stiffness and Damping
	Governing Differential Equation
	Measurement of Velocity Dispersion (bvas)
	Measurement of Inelastic Amplitude Decay (bamp)
	Recording Aperture and the Selection of Filter Bandwidth for bvas and bamp
	Inversion for Stiffness and Damping (cainv3.m)

	Plotting Inversion Results (caplot3.m)
	Post caplot3.m processing.
	Kelvin-Voigt Modeling with cafwd3.m

	Seismic Refraction Processing
	Converting from SEGY to BSEGY Format
	Creating a Base Map from BSEGY Headers

	Using refplot.m for first look
	Direct Wave Method
	Determination of Overburden Velocity
	Delay Time Method
	Adding Constraint Equations

	Delaytime Solution for Shoulder Line
	Broadside Shooting: Slope Line
	Delay time Constraints
	Refractor Velocity Constraint

	Converting the Bison File to BSEGY, Setting Geometry (topcon, bis2seg, bhed)
	Contents of the gogeom script.

	Picking First Breaks
	Building the System of Delay Time Equations (bref)
	Running bref
	Conventions: Structure of Gxxxx matrix
	Conventions: Structure of Dxxxx vector
	Editing the Gxxxx and Dxxxx files

	Running the Delay Time Inversion (delaytm.m)

	Reciprocal Refraction
	Sorting to Common Receiver Gathers
	Running delaytmR.m

	Surface Wave Processing
	Example Rayleigh Wave Processing: Measuring Dispersion
	Running BVAX
	Example Rayleigh Wave Processing: Synthetic Seismogram
	Example Rayleigh Wave Processing: Manual Interpretation (FwdR1.m)
	Example Rayleigh Wave Processing: Automated Inversion (invR1.m)
	Spectral Analysis of Surface Waves SASW (SASW.m, saswv.m)

	Spectral Analysis
	Yule-Walker All Pole Spectra
	Using yulewalker.m
	Using yulewalker.m with Autocorrelation Input

	Seismic Modeling with BSU
	Solution to Lamb's Problem (lamb)
	Running Program lamb
	The itype argument in lamb.
	The pol argument in lamb.
	The stab argument in lamb.
	Examples of lamb

	Elastodynamic Solution Near and Far Field (bnfd)
	Example of bnfd

	Elastic Rayleigh Wave Modeling
	Program halfsp
	Rayleigh Wave Dispersion (programs gendis and disper)
	Two ways to run disper

	gendis
	gendis

	showmdl
	disper
	Editing the namelist file, disper.d

	Synthetic Rayleigh Wave Seismograms (waves)
	genwav
	Editing the waves.d file
	Signal Amplitudes
	From Displacement to Velocity
	Pitfalls in setting parameters

	Hydraulic Conductivity from Seismic Damping
	Mapping KVMB to KV
	KV Damping Ratio vs Hydraulic Conductivity
	Frequency and Hydraulic Conductivity
	Inverting Stiffness and Damping for Hydraulic Conductivity

	Seismic Interferometry
	BCOR
	BIMG
	GENBIMG

	Appendix (bhelp listing)
	Appendix (Merge-all)
	Appendix (Merge2)
	GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007
	IBM LICENSE
	Index

